
1

Incorrectness Logic and Underapproximation:
Foundations of Bug Catching

Quang Loc Le

University College London - loc.le@ucl.ac.uk

Formosan Summer School on Logic, Language, and Computation
National Taiwan University - August 29, 2023

1 / 82

2

Bio

Lecturer in Programming Principles, Logic, and Verification Group
(PPLV), UCL

Some experience in industry

Research topics:
Theory: Program Analysis, Formal Verification

Hoare logic, separation logic, incorrectness logic, string logics
Induction prooofs, cyclic proofs

Application: Finding bugs in big codebase, smart contracts

2 / 82

3

This talk

Incorrectness logic

Separation logic and Incorrectness separation logic

Pulse-X: Finding real bugs in big programs (OOPSLA 2022)
Deployed as a gatekeeper at Facebook/Meta

Was recipient of ACM SIGPLAN Distinguished Paper Award!

3 / 82

4

1 Incorrectness logic

2 Separation logic

3 Incorrectness separation logic

4 Pulse-X

5 Open probelms & Conclusion

4 / 82

5

State of the art: Correctness

Most focus on reasoning for proving correctness

Prove the absence of bugs

To deal with undecidablity: over-approximate reasoning

For scalability
technique: compositionality

codebases: reasoning about incomplete components

resources accessed: spatial locality

support large codebases and large teams

5 / 82

6

Hoare logic

Hoare triple:

{P} c {Q} iff post(c)P ⊆ Q

For all states s in P, if running c on s terminates in s′, then s′ is in Q.

Q over-approximates post(c)P

6 / 82

7

First Axiom of a Bug Catching Tool at Scale

“Don’t Spam the Developers!”

Peter O’Hearn

Peter O’Hearn: co-founder of separation logic and co-founder of Infer
@ Facebook/Meta

7 / 82

8

First Axiom of a Bug Catching Tool at Scale

Incorrectness logic:
A formal foundation for bug finding

Peter O’Hearn

Incorrectness Logic. Peter O’Hearn. POPL 2020

8 / 82

9

Incorrectness logic

Hoare triple:

{P} c {Q} iff post(c)P ⊆ Q

Q over-approximates post(c)P

Under-approximate triple:

[P] c [Q] iff post(c)P ⊇ Q

For all states s in Q, s can be reached by running c on some s′ in P.

Q under-approximates post(c)P

9 / 82

10

Incorrectness logic

Under-approximate triple:

[P] c [Q] iff post(c)P ⊇ Q

For all states s in Q, s can be reached by running c on some s′ in P.

Q under-approximates post(c)P

10 / 82

11

Incorrectness triple

Under-approximate triple

[P] c [Q] iff post(c)P ⊇ Q

For all states s in Q, s can be reached by running c on some s′ in P

Incorrectness triple

[P] c [ε : Q]

ε: exit condition
[ok: normal execution]
[er: erroneous execution]

11 / 82

12

Incorrectness triple: Example

Example 1:

[x = 2]x = x+ 1 [ok : x = 3]

Example 2:

[x = 2]assert(x > 3) [er : x = 2]

12 / 82

13

Incorrectness logic: Summary

Under-approximate analogue of Hoare logic

Formal foundation for bug finding

Reading: Incorrectness Logic. Peter O’Hearn. POPL 2020.

Next: Incorrectness separation logic
Compositionality

memory safety bugs (e.g., null pointer dereference, use-after-free,
memory leak)

13 / 82

14

1 Incorrectness logic

2 Separation logic

3 Incorrectness separation logic

4 Pulse-X

5 Open probelms & Conclusion

14 / 82

15

Separation logic

An extension of Hoare logic for heap-manipulating
programs with aliasing.

Memory bugs: null reference, memory leak, buffer overrun, double free

15 / 82

16

Separation logic: memory bugs

Tony Hoare

Null References: The Billion Dollar Mistake

I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. At that time, I was de-
signing the first comprehensive type system for refer-
ences in an object oriented language (ALGOL W). My
goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically
by the compiler. But I couldn’t resist the temptation to
put in a null reference, simply because it was so easy
to implement. This has led to innumerable errors, vul-
nerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last
forty years.

@QCon - Aug 25, 2009
1

1https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-
Tony-Hoare/

16 / 82

17

Separation Logic: Hoare logic for pointers

Syntax: κ ∧ π: heap formula κ and pure formula π

Semantics:

program states = {(s,h) | s : Var→ Val ∧ h : Loc ⇀fin ValN}

satisfaction relation: s,h |= κ ∧ π

empty heap predicate:

s,h |= emp iff dom(h)={}

17 / 82

18

Separation Logic: Hoare logic for pointers

states = {(s,h) | s : Var→ Val ∧ h : Loc ⇀fin ValN}

points-to predicate:

Example
struct node {int val; node ∗ next}

s,h |=x 7→c(3, y)
s = {(x ,2), (y ,7)}
h = {(2, (3,7))}

18 / 82

19

Separation Logic: Hoare logic for pointers

separating conjunction:

Example

x 7→node(3, y)∗y 7→c(5,null)

Note:
x 7→node() ∗ x 7→node() ≡ false

19 / 82

20

Separation Logic: Hoare logic for pointers

inductive definitions:

Example
Singly-linked list

emp∧root=null ⇒ list(root)
∃ d , r . root 7→node(d , r) ∗ list(r) ⇒ list(root)

20 / 82

21

Separation Logic: axioms

ALLOC
{emp} x = alloc() {x 7→ }

FREE
{x 7→ } free(x) {emp}

READ
{x 7→v} y = [x] {x 7→v ∧ y = v}

WRITE
{x 7→ } [x] = v {x 7→v}

21 / 82

22

Separation logic

Two advantages:

1 Separating conjunction:
x = malloc(...);y = malloc(...);z = malloc(...)

{...}
[x]:= 1;
[y]:= 2;
[z]:= 3;
{...}

22 / 82

23

Separation logic

Two advantages:

1 Separating conjunction:
x = malloc(...);y = malloc(...);z = malloc(...)

{x 6= y ∧ x 6= z ∧ y 6= z}
[x]:= 1;
[y]:= 2;
[z]:= 3;

{x 6= y ∧ x 6= z ∧ y 6= z ∧ h(x) = 1 ∧ h(y) = 2 ∧ h(z) = 3}

3!/2 inequalities

23 / 82

24

Separation logic

Two advantages:

1 Separating conjunction:
x = malloc(...);y = malloc(...);z = malloc(...)

{x 7→ ∗ y 7→ ∗ z 7→ }
[x]:= 1;
[y]:= 2;
[z]:= 3;

{x 7→1 ∗ y 7→2 ∗ z 7→3}

24 / 82

25

Separation logic

Two advantages:

1 Separating conjunction

2 Frame rule

{P} c {Q}
Mod(c) ∩ FV(F) = ∅

{P ∗ F} c {Q ∗ F}

25 / 82

26

Separation logic

Two advantages:

1 Separating conjunction

2 Frame rule

{P} c {Q}
Mod(c) ∩ FV(F) = ∅

{P ∗ F} c {Q ∗ F}

{x 7→a} [x] := 1 {x 7→1}
{x 7→v1 ∗ y 7→v2 ∗ z 7→v3} [x] = 1 {x 7→1 ∗ y 7→v2 ∗ z 7→v3}

26 / 82

27

Separation logic

Two advantages:

1 Separating conjunction

2 Frame rule

{x 7→v1 ∗ y 7→v2 ∗ z 7→v3}
[x]:= 1;

{x 7→1 ∗ y 7→v2 ∗ z 7→v3}
[y]:= 2;

{x 7→1 ∗ y 7→2 ∗ z 7→v3}
[z]:= 3;

{x 7→1 ∗ y 7→2 ∗ z 7→3}

27 / 82

28

Separation logic

Compositionality and Scalability

The analysis result of a composite program is defined in terms of
the analysis results of its parts and a means of combining them.

part: procedures/functions

analysis result: Hoare triples

a means: bi-abduction 28 / 82

29

Analysis problem

1 void f(bool b,int ∗ x){
2 if(b){
3 free(x);
4 ∗x := 1;
5 }
6 }

2

3

4

5

assume(b = 0)

assume(!(b = 0))

free(x)

∗x := 1

Given:
a program: control flow graphs

specs of atomic procedures and libraries are given
Question:

find spec of the program

29 / 82

30

Bi-abduction

For each procedure with code c, Infer starts with emp
as preconidtion, it uses bi-abduction to infer pre/post

such that c does not contain memory bugs.

30 / 82

31

Bi-abduction

Over-approximate bi-abduction question:

A ∗ ?M ` G ∗ ?F

∗ ?M goes to pre
∗ ?F goes to post

Example:

{y 7→v2 ∗ z 7→v3}
[x]:= 1;
{?}

for safety:

{x 7→v1}[x] := 1; {x 7→1}

Bi-abduction query:

y 7→v2 ∗ z 7→v3 ∗ ?M ` x 7→v1 ∗ ?F

Infer:

F = y 7→v2 ∗ z 7→v3
M = x 7→v1

31 / 82

32

Separation logic - Infer

Compositional Shape Analysis by Means of Bi-Abduction (POPL’09)

analysed Linux Kernel 2.6.25.4 (2.473 MLOC) < 30 mins
led to Facebook’s Infer in 20132

2http://www.finsmes.com/2013/07/facebook-acquires-monoidics.html
32 / 82

33

Second-Order Bi-Abduction 3

One-phase sound analysis for specification inference
works for arbitrary data structures e.g., tll data structures

3Shape Analysis via Second-Order Bi-Abduction. CAV 2014
33 / 82

34

Separation logic: Summary

Over-approximate bi-abduction for the absence of memory safety
bugs

Compositionality and scalability

Reading list:
Separation logic: a logic for shared mutable data structures. JC
Reynolds. LICS 2002

BI as an Assertion Language for Mutable Data Structures. Samin
S. Ishtiaq, Peter W. O’Hearn. POPL 2021

Local Reasoning about Programs that Alter Data Structures. Peter
W. O’Hearn, John C. Reynolds, Hongseok Yang. CSL 2001.

Shape Analysis via Second-Order Bi-Abduction. Quang Loc Le,
Cristian Gherghina, Shengchao Qin, Wei-Ngan Chin. CAV 2014

34 / 82

35

1 Incorrectness logic

2 Separation logic

3 Incorrectness separation logic

4 Pulse-X

5 Open probelms & Conclusion

35 / 82

36

Incorrectness separation logic

Incorrectness triple

[P] c [ε : Q]

ε: exit condition
[ok: normal execution]
[er: erroneous execution]

36 / 82

37

Incorrectness separation logic: essential rules

From separation logic:

{x 7→ } free(x) {emp}

to incorrectness separation Logic

[x 7→] free(x) [ok : emp]

Any problems?

37 / 82

38

Incorrectness separation logic: essential rules

[x 7→] free(x) [ok : emp]

Problems:
Post is over-approximated

Frame rule does not hold

[x 7→] free(x) [ok : emp]
Frame

[x 7→ ∗ x 7→1] free(x) [ok : emp ∗ x 7→1]
Conseq

[false] free(x) [ok : x 7→1]

[P] c [Q] iff post(c)P ⊇ Q

For all states s in Q, s can be reached by running c on some s′ in P.

38 / 82

39

Incorrectness separation logic: essential rules

Solution: Track deallocated locations
x 67→ means x is de-allocated

[x 7→] free(x) [ok : x 67→]

x 67→ ∗ x 67→ ≡ false and x 7→ ∗ x 67→ ≡ false

Frame rule trivially hold

[x 7→] free(x) [ok : x 67→]
Frame

[x 7→ ∗ x 7→1] free(x) [ok : x 67→ ∗ x 7→1]
Conseq

[false] free(x) [ok : false]

39 / 82

40

Incorrectness separation logic: axioms

FREE
[x 7→] free(x) [ok : x 67→]

[x 67→] free(x) [er : x 67→]//double-free
[x = null] free(x) [er : x = null]//NPE

ALLOC
[emp] x = alloc() [ok : x 7→]

READ
[x 7→v] y = [x] [ok : x 7→v ∧ y = v]

[x 67→] y = [x] [er : x 67→]//use-after-free
[x = null] y = [x] [er : x = null]//NPE

WRITE

[x 7→] [x] = v [ok : x 7→v]
[x 67→] [x] = v [er : x 67→]//use-after-free
[x = null] [x] = v [er : x = null]//NPE

40 / 82

41

Incorrectness separation logic: Summary

IL + SL for compositional bug finding

Under-approximate analogue of SL

Targets memory safety bugs

New notation for de-allocated locations

Reading: Local Reasoning About the Presence of Bugs:
Incorrectness Separation Logic. Azalea Raad, Josh Berdine,
Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, Jules Villard.
CAV 2020

Next:
inter-procedural analysis

Compositional bug reporting via no-false-positives theorem

41 / 82

42

1 Incorrectness logic

2 Separation logic

3 Incorrectness separation logic

4 Pulse-X

5 Open probelms & Conclusion

42 / 82

43

Separation logic - Infer

Compositional Shape Analysis by Means of Bi-Abduction (POPL’09)

analysed Linux Kernel 2.6.25.4 (2.473 MLOC) < 30 mins
led to Facebook’s Infer in 20134

4http://www.finsmes.com/2013/07/facebook-acquires-monoidics.html
43 / 82

44

Infer 1.0

High number of false positives due to
Over-approximation

Using heuristics to report bugs compositionally

44 / 82

45

Interaction with OpenSSL Developers

Pulse-X found 41 bugs, 15 were unknown previously
We committed fixes in pull request #15834

1 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
3 "prepend cert");
4
5 memset(exc, 0, sizeof(*exc));
6 ...
7 }

1 app malloc: is a malloc wrapper, and could return null.

2 memset(exc,0, ..) sets heap’s content pointed to by exc to 0.

45 / 82

46

Interaction with OpenSSL Developers

Pulse-X found 41 bugs, 15 were unknown previously
We committed fixes in pull request #15834

1 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
3 "prepend cert");
4
5 memset(exc, 0, sizeof(*exc));
6 ...
7 }

1 app malloc: is a malloc wrapper, and could return null.

2 memset(exc,0, ..) sets heap’s content pointed to by exc to 0.

Do you catch the bug?

46 / 82

47

Interaction with OpenSSL Developers

Pulse-X found 41 bugs, 15 were unknown previously
We committed fixes in pull request #15834

1 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
3 "prepend cert");
4
5 memset(exc, 0, sizeof(*exc));
6 ...
7 }

memset(null, .., ..) causes an null-pointer dereference
error.

47 / 82

48

Interaction with OpenSSL Developers

Pulse-X found 41 bugs, 15 were unknown previously
We committed fixes in pull request #15834

1 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
3 "prepend cert");
4
5 + if(exc == NULL)
6 + return 0;
7 memset(exc, 0, sizeof(*exc));
8 ...
9 }

OpenSSL developer:

False positive, app malloc() aborts when the allocation fails.

48 / 82

49

Interaction with OpenSSL Developers - Error trace
apps/lib/s_cb.c:959: error: Nullptr Dereference
PISL found a potential null pointer dereference on line 959.

apps/lib/s_cb.c:957:23: in call to ‘app_malloc‘
955. static int ssl_excert_prepend(SSL_EXCERT **pexc)
956. {
957. SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");

ˆ
958.
959. memset(exc, 0, sizeof(*exc));

test/testutil/apps_mem.c:16:16: in call to ‘CRYPTO_malloc‘ (modelled)
14. void *app_malloc(size_t sz, const char *what)
15. {
16. void *vp = OPENSSL_malloc(sz);

ˆ

test/testutil/apps_mem.c:16:16: is the null pointer
14. void *app_malloc(size_t sz, const char *what)
15. {
16. void *vp = OPENSSL_malloc(sz);

ˆ
17.
18. return vp;

...
49 / 82

50

Interaction with OpenSSL Developers - grep search

another app malloc in apps/lib/apps.c

1 void app_bail_out(char *fmt, ...) {
2 va_list args;
3 va_start(args, fmt);
4 BIO_vprintf(bio_err, fmt, args);
5 va_end(args);
6 ERR_print_errors(bio_err);
7 exit(EXIT_FAILURE);
8 }
9

10 void *app_malloc(size_t sz, const char *what) {
11 void *vp = OPENSSL_malloc(sz);
12
13 if (vp == NULL)
14 app_bail_out("%s: Could not allocate %zu bytes

for %s\n",
15 opt_getprog(), sz, what);
16 return vp;
17 }

50 / 82

51

Interaction with OpenSSL Developers - accept fix

Then, he created pull request #15836 to commit the fix.

51 / 82

52

Pulse-X at a glance

Pulse-X: A tool that proves the presence of bugs
(e.g., null pointer dereferences, use-after-frees, leaks, ...)

Under-approximate bi-abduction
using Incorrectness Separation Logic

Compositional bug reporting mechanism
latent vs. manifest errors

52 / 82

53

Our goals

Pulse-X: A tool that proves the presence of bugs

Precision
doesn’t spam the developers.

Scalability
3-dimensional scale: code (large codebases), people (big team),
velocity (high frequency of code changes)

continuous integration (CI) reasoning

Adoption

53 / 82

54

Pulse-X⇐ Infer

Compositional Shape Analysis by Means of Bi-Abduction (POPL’09)

Two concerns:
Clash with foundations

Report bugs compositionally

54 / 82

55

Clash with foundations

Prove the presence of bugs

Under-approximation vs. Over-approximation

55 / 82

56

Under-approximate reasoning

symbolic execution (KLEE),
symbolic model checking (CBMC)

whole-program analysis

advantages:
report true bugs

disadvantages:
not scaled (for CI)
memory model: does not support
(unbounded) symbolic heaps

56 / 82

57

Over-approximate reasoning

compositional reasoning by
means of bi-abduction (Infer)

begin-anywhere analysis

advantages:
scalability
memory model: separation
logic

disadvantages:
may report false positives

57 / 82

58

Foundations

Prove the presence of bugs

under-approximate reasoning over-approximate reasoning

symbolic execution (KLEE), sym-
bolic model checking (CBMC)

compositional reasoning by
means of bi-abduction (Infer)

whole-program analysis begin-anywhere analysis

not scaled scalability

memory model: does not support
(unbounded) symbolic heaps

memory model: separation logic

true bugs false positives

How to achieve both scalability and precision?
58 / 82

59

Foundations

A scalable and precise bug-finding tool
true bugs and scalability

1 under-approximate analogue of Infer; or

2 compositional analogue of KLEE, CBMC

memory model:
under-approximate analogue of separation logic

⇒ incorrectness separation logic (CAV’20)

59 / 82

60

Foundations: our attempt

an under-approximate analogue of Infer using
incorrectness separation logic

60 / 82

61

Compositional reasoning

The analysis result of a composite program is defined in terms of
the analysis results of its parts and a means of combining them.

part: procedures

analysis result: under-approximate specs i.e., incorrectness
triples5

a means: under-approximate bi-abduction
5Peter O’Hearn. Incorrectness Logic. POPL’20

61 / 82

62

Incorrectness triple6

Under-approximate triple

[P] c [Q] iff post(c)P ⊇ Q

For all states s in Q, s can be reached by running c on some s′ in P

Incorrectness triple

[P] c [ε : Q]

ε: exit condition
[ok: normal execution]
[er: erroneous execution]

6Peter O’Hearn. Incorrectness Logic. POPL’20
62 / 82

63

Analysis problem

1 void f(bool b,int ∗ x){
2 if(b){
3 free(x);
4 ∗x := 1;
5 }
6 }

2

3

4

5

assume(b = 0)

assume(!(b = 0))

free(x)

∗x := 1

Given:
a program: control flow graphs

specs of atomic procedures and libraries are given
Question:

find spec of the program

63 / 82

64

Under-approximate bi-abduction

Over-approximate bi-abduction question:

A ∗ ?M ` G ∗ ?F

Under-approximate bi-abduction question:

A ∗ ?F ` G ∗ ?M

abductive inference: find F

anti-abductive inference: find M

64 / 82

65

Under-approximate bi-abduction

A ∗ ?F ` G ∗ ?M

Frame rule

[P] c [ε : Q]
Mod(c) ∩ FV(F) = ∅

[P ∗ F] c [ε : Q ∗ F]

Stack-in-heap meory model

65 / 82

66

Compositional Bug Reporting

Without considering the entire program, how do we
know a bug is true?

Do you report a null pointer
dereference?

1 void f(int* x) {
2 *x = 42;
3 }

Existing approaches:

Infer uses heuristics:
surfacing failed proofs and bug patterns.

UC-KLEE uses heuristics with annotations
OpenSSL-1.0.2: 11 real bugs / 474 errors found = 2.32%

66 / 82

67

Compositional Bug Reporting: Pulse-X

[x 7→X ∗ X 7→]f(x) [ok : x 7→X ∗ X 7→42]

[x 7→null]f(x) [er : x 7→null]

[x 67→]f(x) [er : x 67→]

Pulse-X classifies er triples:
Manifest bugs: any call to the function will trigger the error.

Latent bugs: only some calls to the function will trigger the error.

67 / 82

68

Compositional Bug Reporting: Pulse-X

1 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
3 "prepend cert");
4
5 memset(exc, 0, sizeof(*exc));
6 ...
7 }

Listing 1: OpenSSL null pointer bug in ssl excert prepend.

Manifest error
for any value of input exc, this error happens.
any call to ssl excert prepend will trigger the error.

68 / 82

69

Compositional Bug Reporting: Pulse-X

1 int chopup_args(ARGS *arg, ...) {
2 int num,i;
3 ...
4 if (arg->count == 0) {
5 arg->count=20;
6 arg->data= (char **)OPENSSL_malloc(...);
7 }
8 for (i=0; i<arg->count; i++)
9 arg->data[i]=NULL;

10
11 }

Listing 2: Latent error in chopup args.

Latent error
only program paths with inputs arg−>count = 0 lead to error.
some call to chopup args will trigger the error.

69 / 82

70

Compositional Bug Reporting: Pulse-X

1 int main(int Argc, char *ARGV[]){
2 ARGS arg;
3 ...
4 arg.count=0;
5 ...
6 if (!chopup_args(&arg,..)) break;
7 ...
8 }

Listing 3: Manifest error in main of openssl.c.

Latent error
only paths with inputs arg−>count = 0 lead to error.
some call to chopup args will trigger the error.

the call in main

70 / 82

71

Compositional Bug Reporting: True Positives Theorem

Theorem (Manifest errors)

An error triple |= [p] C [er : q] with q , ∃
−→
Xq. κq ∧ πq denotes a manifest

error if:
1 p ≡ emp ∧ true ;
2 sat(q) holds;
3 locs(κq) ⊆

−→
Xq, where locs(.) is the set of heap locations; and

4 for all −→v , sat(πq[
−→v /
−→
Y ∪ locs(κq)]) holds, where

−→
Y = flv(q).

locs(emp),∅ locs(x 7→X),{x} locs(X 7→V)=locs(X 67→),{X}
locs(κ1 ∗ κ2), locs(κ1) ∪ locs(κ2)

71 / 82

72

Implementation: Scientist vs. Engineer

“Scientists seek perfection and are
idealists. ... An engineer’s task is to

not be idealistic. You need to be
realistic as you have to compromise

between conflicting interests.”
Tony Hoare

72 / 82

73

Implementation: with an Incomplete Solver

speed vs. precision

dumb but fast vs. smart but slow

1 incomplete SAT solver: equalities

2 function pointers, unknown functions

Pulse-X might produce false positives

73 / 82

74

Evaluation

Data set: OpenSSL and 8 open-sourced C++ projects developed and
maintained by Facebook.

practical bug classification: for each issue found
true bug: it has been fixed

pending bug: the fix has not accepted yet

false positive: we could not find a fix

fix rate = number of true bugs/total issues found

Experimental plan:
run Pulse-X and Infer on each project, collect timings and bugs
found

evaluate precision: check/classify the bugs found on OpenSSL

evaluate scalability: compare the timings
74 / 82

75

Evaluation: Goals

Hypothesis H1. On OpenSSL-1.0.1h Pulse-X has a superior fix
rate to the present-day Infer.

Hypothesis H2. Pulse-X finds new bugs worth fixing in current
OpenSSL.

Hypothesis H3. Pulse-X is broadly comparable with Infer in terms
of performance, while reporting a comparable number of bugs.

75 / 82

76

Evaluation: H1

Old bugs with OpenSSL-1.0.1h
8,658 procedures, 444K lines of code, 2.83M of bytes of code

older Infer found 15 bugs in 2015

Results:
Pulse-X: 26 issues - 19 true bugs, 7 false positives

fix rate: 73%

Infer: 80 issues - 39 true bugs (8 overlap with Pulse-X), 41 false
positives

fix rate: 48.75%

76 / 82

77

Evaluation: H2

New bugs with OpenSSL-3.0.0
22,979 procedures, 754K lines of code, 8.55M of bytes of code

Results:
Pulse-X: 30 issues - 15 true bugs, 5 pending, 10 false positives

fix rate: 50%
pull requests: #15834, #15836, and #15910

run Pulse-X on the fix, the bug does not occur.

Infer: 116 issues - 7 true bugs (all overlap with Pulse-X), 40 false
positives, 69 unchecked

fix rate: 6% - 65%

On average, fix rate: Pulse-X: 61% and Infer: 23% - 59%

Pulse at Facebook: fix rate is 82%.
77 / 82

78

Evaluation: H3

Project #files LoC(k) #procs BoC(m)
OpenSSL-1.0.1h 1536 444 8658 2.83
OpenSSL-3.0.3 2452 754 22979 8.55
wdt 194 25.4 6679 8.5
bistro 424 37.6 7290 9.7
SQuangLe 36 8.3 12938 17.9
RocksDB 1291 411.7 14669 18
FbThrift 5639 937.7 21753 29
OpenR 341 78.3 124461 195.7
Treadmill 409 25.3 236676 393.7
Watchman 557 63.2 245661 407.3

78 / 82

79

Evaluation: H3

79 / 82

80

1 Incorrectness logic

2 Separation logic

3 Incorrectness separation logic

4 Pulse-X

5 Open probelms & Conclusion

80 / 82

81

Open research probelms

1 Backward variant inference for loops and recursive procedures
cyclic incorrectness proofs
least fixed point for weakest post-conditions

2 Incorrectness proofs for OO programs

3 Quantitative weakest post

4 Reasoning about unknown functions
test harness generation (e.g., with directed fuzz testing)
incorrectness proofs for higher-order functions

5 Bug-finding tools for concurrent programs

81 / 82

82

Take away

Pulse-X: A scalable compositional bug-finding tool
under-approximate bi-abduction

true-positives theorem

Experiments, Pulse-X
found 41 bugs in OpenSSL, 15 were previously unknown.
fix rate might be 2.7x higher than Infer
as scalable as Infer

Ad: PhD positions (with scholarships) are available!
Email: loc.le@ucl.ac.uk

Thanks for listening

82 / 82

	Incorrectness logic
	Separation logic
	Incorrectness separation logic
	Pulse-X
	Open probelms & Conclusion

