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Automated Verification with HIP/SLEEK and
Second-Order Abductive Inference
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Thanh-Toan Nguyen, and Quang-Trung Ta

Abstract There are several important factors to consider for automated program
verification systems, including modularity, precision, expressivity and automation. The
HIP/SLEEK verification system was designed with a bunch of these factors in mind. We
were inspired by a new logic (at that time), known as separation logic, which forms the
core of our specification logic. From the beginning, we value program proving as much
as program analysis; and would focus first on the development of expressive specification
and automated verification, before program analyses are subsequently considered in an
orthogonal fashion. This approach allows us to experiment with specification and proving,
before using them to further guide the inference process. We have also integrated both
proving and inference within the same entailment system with the help of second-order
biabductive reasoning. While this approach takes longer to develop, we believe it is a
more principled and systematic way to develop automated program verification systems.
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1.1 Introduction

The HIP/SLEEK project is an early adopter and pioneer in the use of separation logic to
support reasoning for heap-manipulating programs. Separation logic allows must-aliasing
where strong updates can be supported for mutable heap nodes, and the use of inductive
predicates can capture data structures with complex invariant properties, such as sorted
lists or near-balanced AVL trees.

In the course of the project, we have focused on several major issues of automated
program verification, namely precision, modularity, expressivity and automation.

Precision is supported by must-aliasing from pointer-based logic, together with suitable
addition of pure logic, such as arithmetic or set properties [68].

Modularity is handled by our focus on a per method (or loop) verification via Hoare-style
pre/post specifications.

Expressivity is supported by the use of structured specifications (with support for
proof search, case analysis and staged verification) [33] and the use of lemmas (relating
arbitrary predicates) that can be automatically applied and proven [67].

Lastly, proof automation is supported by an algorithm that is built on top of a set of
sound proof rules. In our project, the proof system progressively matches the antecedent
and consequent of each proof entailment, until some residue form is discovered. Both
frame and anti-frame can be captured in our automated entailment prover, to help support
both frame and abductive inferences. Moreover, we support proof search with the help of
a set of outcomes from the entailment proving process. These designs allow us to support
both automated proof and modular program analyses, allowing a smoother transition from
proving to program analysis, in this new extended specification logic.

Our HIP/SLEEK project has also progressed beyond functional correctness. We
have an extension that supports both temporary and permanent immutability [26], and
another extension which supports both use-site and field immutability. We have also
designed an extended resource logic to help us reason about both termination as well
as non-termination. Both these properties can be captured by our enhanced logic with
resource specification support that mirrors upper and lower bound of computation. These
can moreover be discovered by specification inference mechanisms through second-order
abductive reasoning.

1.2 HIP – Verification System

We present an overview of our verification system HIP/SLEEK in Fig. 1.1. Its front-end
is a Hoare-Floyd style forward-verifier, called HIP, which analyzes C-like imperative
programs against their specifications written in pairs of pre- and post-conditions. Its
back-end is a logical prover, called SLEEK, which examines verification conditions
generated by HIP to decide whether the input programs satisfy their specifications. The
details of this verification process are as follows:

• Firstly, the verifier HIP takes as input the C-like source code of the program to be
verified along with its pre-/post-specifications;
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code verifier
(HIP)

predicates lemmascode (C-like) pre/post

logical prover
(SLEEK)

range of pure provers: Z3, Omega, Redlog, MONA, etc.

Fig. 1.1 HIP/SLEEK overview: HIP checks whether the code verifies against its attached pre-/post-
conditions, discharging proof obligations to SLEEK. In its turn, SLEEK relies on a number of off-the-shelf
constraint solvers and theorem provers. The solid arrows show the workflow of the verification, and the
dashed arrows are used to denote inference of predicates, lemmas and/or pre-/post-specifications).

• Then, HIP verifies the input code against its specification in two phases. (i) For each
method definition, HIP assumes that the pre-condition holds, and it derives the strongest
post-condition upon the method’s body and checks whether the derived post-condition
entails the declared post-condition (see METH−DEF in Sub. 1.2.3). (ii) For each method
call, HIP checks whether the callee’s pre-condition holds at the caller’s site. If yes, it
adds the corresponding post-condition to the caller’s abstract state (see METH−CALL in
Sub. 1.2.3). See Fig. 1.4 for a full list of the forward verification rules.

• The verification rules often involve discharging proof obligations in the form of
entailment checks, solved by the prover SLEEK (detailed in Sec. 1.3). SLEEK reasons
about user-defined predicates, and, consequently, lemmas which relate the different
predicates describing the same resource.

• The specification language supported by HIP/SLEEK is rich (see Fig. 1.3 for the full
specification language), comprising not only shape properties, but also numerical ones,
such as size, values, sortedness, etc. To handle all these theories, our system interacts
with a series of off-the-shelf constraint solvers and theorem provers, such as Z3 [66],
Omega Calculator [81], MONA [28], etc.

1.2.1 The Programming Language

A program P (Fig. 1.2) contains user-defined data structures (data) and methods (method).
Each method is decorated with pre-/post-specifications describing the program’s func-
tionality and safety conditions. A method can take both pass-by-reference (ref t v)
parameters as well as pass-by-value ones (t v). Memory is allocated using the new
operator, and v.f. is used to dereference data structures fields. The underlying language
also supports loops (decorated with loop invariants) but treats them as tail-recursive calls
(and translates the loop invariants into sets of pre-/post-specifications).

Data structures are defined in HIP/SLEEK as follows:
data node { int val; node next;}
data tree { int val; tree left; tree right;}

A program which recursively appends two linked-lists may be written as follows:
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(Program) P ::= data∗ method∗

(Data Struct.) data ::= struct 𝑑 { (t f )∗ }
(Method Def.) method ::= 𝑡 mn( (ref 𝑡 𝑣)∗, (𝑡 𝑣)∗ ) (requires Φ𝑝𝑟 ensures Φ𝑝𝑜; )∗{e}
(Types) 𝑡 ::= d | 𝜏
(Primitive Types) 𝜏 ::= int | bool | float | void
(Expressions) e ::= NULL | k𝜏 | v | new d(v∗ ) | t v; e | v.f | mn(v∗ )

| v:=e | v.f:=e | e; e | if (b) e else e | return e
(Boolean Expr.) b ::= e==e | !(b) | b&b | b |b

where k𝜏 is a constant of type 𝜏, v is a variable, f denotes a field, and mn is a method’s name.

Fig. 1.2 A Core Imperative Language.

1 void append(node x, node y)
2 {
3 if (x.next==NULL) x.next = y;
4 else {
5 // x.val = 0;
6 append(x.next,y);
7 }
8 }

Although HIP/SLEEK can verify concurrent programs too, this paper only describes the
verification of programs in the sequential setting. Details on the extension of HIP/SLEEK
with a session logic to verify communication centered programs are found at [23, 22, 20],
while details on the verification of barriers and other synchronization mechanisms are
found at [49, 50, 51, 86]. If the reader is further interested in how to use HIP/SLEEK for
program repair, [61, 69, 70] details that too.

1.2.2 The Specification Language

The specification language (see Fig. 1.3) is built on an extension of Separation Logic
[83, 39] with support for separation conjunction ∗ and inductive predicates. The spatial
formula 𝜅1 ∗ 𝜅2 asserts that the heap can be split into two disjoint parts in which 𝜅1 and 𝜅2
hold, respectively. Moreover, u↦→d⟨v⟩ is a singleton heap (or heaplet) modelling a single
data structure having u as its root address and v as values of its fields. For example, the
formula u ↦→node⟨0, v⟩ represents a data structure of type nodewhose first field (val) has
the value 0, and the second field (next) is a pointer v. Furthermore, P(v) is an inductive
heap modelling a recursive data structure. In our work, by convention, the first argument
in v is the "root" pointer to the specified data structure that guides the data traversal in
P(v). Besides the spatial and first order logic operators, the specification language also
allows the user to write arithmetic and bag constraints.

The descriptions of the data structures come in the form of inductive predicates which
capture the shape and numerical properties of the underlying data structures. Since
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(Symbolic pred.) pred ::= P(v) ≜ Φ inv 𝜋

(Formula) Φ ::=
∨

Δ Δ ::= ∃ v·𝜅∧𝜋 | Δ ∗ Δ
(Spatial formula) 𝜅 ::= emp | v↦→d⟨v⟩ | P(v) | 𝜅 ∗ 𝜅 | V
(Pure) 𝜋 ::= b | s | 𝜋∧𝜋 | 𝜋∨𝜋 | ¬𝜋 | ∃v · 𝜋 | ∀v · 𝜋 | 𝛾
(Pointer eq./diseq.) 𝛾 ::= v=v | v=null | v≠v | v≠null
(Boolean) b ::= true | false | b=b s ::=s=s | s≤s | V=Δ
(Presburger Arith.) s ::= k𝜏 | v | k𝜏×s | s+s | −s
(Bag Constraint) 𝜑 ::= v∈B | B=B | B⊏B | ∀v∈B·𝜋 | ∃v∈B·𝜋

B ::= B⊔B | B⊓B | B−B | ∅ | {v}

where k𝜏 : constant of type 𝜏; v : first order variable;
V : second-order variable;
d : name of a user-defined data structure

Fig. 1.3 The Specification Language

we do not restrict what data structures the program uses, we also do not restrict their
corresponding predicates – thus the user has the freedom to write the necessary predicates
as they obey some well-foundness conditions (detailed later in the section). For example,
the predicates below inductively describe the shape of a linked-list and a linked-list
segment, respectively:

ll(x) ≜ emp ∧ x=null ∨ ∃q · (x↦→node⟨_, q⟩ ∗ ll(q)).
lseg(x, p) ≜ emp ∧ x=p ∨ ∃q · (x↦→node⟨_, q⟩ ∗ lseg(q, p)).

The ll (or lseg) predicate asserts that a linked-list (or a linked-list segment) can
be empty when the root pointer to the structure is null, x=null (or equal to the pivot
node x=p), or non-empty when the root pointer refers to a node whose next field points
to a linked-list (or linked-list segment, respectively). The separating conjunction in the
inductive case ensures that the head and the tail of the linked-list structure reside in
disjoint heaps. We use underscore (_) in the formulae to denote an existentially quantified
(anonymous) variable. All the non-parameter variables in the definition of a predicate are
existentially quantified, even when not explicitly stated as so. The specification for the
append code given in the previous subsection, may now be expressed as:

requires ll(x) ∗ ll(y) ∧ x≠null
ensures ll(x);

However, even though this specification is correct, it is actually too weak to capture
the gist of the append operation. Instead we could write the following more precise
specification where the pre-condition on the y parameter is a weaker list segment (instead
of null-terminated ll(y) list):

requires lseg(x, null) ∗ lseg(y, q) ∧ x≠null
ensures lseg(x, q);
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These two definitions (ll and lseg) can be refined into capturing more precise
information about the underlying structures, such as the size of the lists:

lln (x, n) ≜ (emp ∧ x=null ∧ n=0) ∨ ∃q · (x↦→node⟨_, q⟩ ∗ lln (q, n−1))
inv n≥0.

lsegn (x, p, n) ≜ (emp ∧ x=p ∧ n=0) ∨ ∃q · (x↦→node⟨_, q⟩ ∗ lsegn (q, p, n−1))
inv n≥0.

The above definitions also specify a default invariant n≥0 which holds for all lln
and lsegn list predicates. This predicate invariant can be verified by checking that each
disjunctive branch of the predicate definition always implies its stated invariant. Types
need not be given in our specification as we have an inference algorithm to automatically
infer non-empty types for specifications that are well-typed. For the above predicates, our
type inference can determine that n is of int type, while x, q and p are of node type. The
specification for the append method could now capture even more information with this
improved definitions:

requires lln (x, n) ∗ lln (y, m) ∧ x≠null
ensures lln (x, n+m);
requires lsegn (x, null, n) ∗ lsegn (y, q, m) ∧ x≠null
ensures lsegn (x, q, n+m);
The appendmethod verifies against these specifications. But let us consider a scenario

for the append method given earlier where the instruction at line 5 is uncommented. That
is, the bogus statement x.val = 0 is now assumed to be a part of the append’s method
body. So the considered method now also resets the values stored in the list segment
pointed by x. To avoid this bogus behavior we could refine further the definition of a list
segment and the pre-/post-specifications as follows:

lsegB (x, p, n, B) ≜ (emp ∧ x=p ∧ n=0 ∧ B=∅) ∨
∃q, v · (x↦→node⟨v, q⟩ ∗ lsegB (q, p, n−1, B1) ∧ B=B1 ∪ {v})
inv n≥0.

requires lsegB (x, null, n, Bx) ∗ lsegB (y, q, m, By) ∧ x≠null
ensures lsegB (x, q, n+m, Bx ∪ By);

which besides the shape and size properties, it also captures the values stored in the
linked-lists. Going even further with these refinements, one could also define the sorted-
ness property of the linked-list segment:

lsort(x, p, n, B) ≜ (emp ∧ x=p ∧ n=0 ∧ B=∅) ∨
∃q, v · (x↦→node⟨v, q⟩ ∗ lsort(q, p, n−1, B1) ∧ B=B1 ∪ {v})
∧ ∀w · (w ∉ B1 ∨ v≤w)
inv n≥0.

The program’s specification in this case can be written as:
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requires lsort(x, null, n, Bx) ∗ lsort(y, q, m, By) ∧ x≠null ∧
∀vx, vy · ((vx ∈ Bx ∧ vy ∈ By) ∨ (vx≤vy))

ensures lsort(x, q, n+m, Bx ∪ By);
which ensures that if the two lists given as input are sorted, and, moreover, all the elements
in the list pointed by x are less than or equal to the elements in the list segment pointed by
y, then the resulting list segment is still sorted.

Multiple Specifications. Each method may be decorated with multiple pairs of pre-/post-
conditions. If that is the case, a method definition needs to verify against every pair of
associated specifications, while a callee needs to entail at least one pre-condition associ-
ated with the corresponding method call (or at least one pre-conditions corresponding
to each context of the method call if the same call statement needs to be verified from
different contexts). In other words, the caller may choose the pair of specification(s) which
caters best for its calling environment. For the append method, all of the specifications
provided so far verify against the method’s body, hence a user may very well attach all of
the earlier specifications to append. The technical details behind this enhancement are
found in [15].

Immutability Specifications. It is often the case that a method only mutates some
parts of its memory footprint. To capture this fact in the specification, HIP supports a
logic of immutability annotations, where data structures are annotated as mutable – @M,
or immutable – @L according to the case. We define a subsumption relation between
these annotations, where @M<:@L, meaning that a heap which is annotated as mutable
may be both read or mutated, while an immutable heap may only be used for reading
operations. There are a number of benefits from using immutability annotations, such as
concise specifications, or increased expressivity as compared to the specifications with no
immutability annotations. There is an exhaustive list of these benefits and the technical
details behind the immutability annotations in [26]. Furthermore, it is also the case that
a method may only operate on certain fields of a given data structure. This fact may be
described using immutability annotations at the field level rather than at the data structure
level, e.g. a list should maintain its shape intact while being passed to a method that only
resets its values. The details of how HIP achieves this are found in [21].

Coming back to the appendmethod, one could now write a more compact specification
which captures the immutability of both the shape and the values of the list segment
pointed by y as follows:

requires lseg(x, null) ∗ lseg(y, q)@L ∧ x≠null
ensures lseg(x, q);

where lseg(y, q) was marked as immutable. As its properties need not be proved, and
are just assumed to hold, the list segment is omitted from the post-condition.
Structured Specifications. We show in [33] how adding structure to a flat specification
leads to better expressiveness and verifiability. In particular, structured specifications
allow a verifier to perform a case analysis in order to take advantage of the disjointness
conditions in the logic.
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Specifications with the Explicit Notion of Infinity. We show in [87] the benefits of
adding the notion of infinity to the specification language. In particular, the specifications
are not only more expressive, but also more human readable and more concise, leading
to better composability. For example, the sortedness property of linked-list segments
may also be captured via the minimum value property when one chooses to avoid the
expensive reasoning over bags of values:

lsortmin (x, p, mn) ≜ (x ↦→node⟨mn, p⟩) ∨
∃q, mn1 · (x ↦→node⟨mn, q⟩ ∗ lsortmin (q, p, mn1) ∧ mn≤mn1).

but this definition forces the list segment to be non-empty. To support empty case
too and to avoid disjunctive specifications which should have dedicated assertions for
the empty case, one would write the following definition using the special ghost variable∞:

lsort∞min (x, p, mn) ≜ emp ∧ x=p ∧ mn=∞∨
∃q, mn1 · (x ↦→node⟨mn, q⟩ ∗ lsort∞min (q, p, mn1) ∧ mn≤mn1).

Well-formedness. As highlighted before, separation formulae are used in pre/post-
conditions and shape definitions. In order to handle them correctly without running into
unmatched residual heap nodes, we require each separation constraint to be well-formed,
as defined below:

Definition 1 (Accessible) A variable is accessible if it is a method parameter, or if it is a
dedicated variable, such as res.

Definition 2 (Reachable) Given a heap constraint 𝜅 and a pointer constraint 𝛾, the heap
nodes in 𝜅 that are reachable from a set of pointers S can be computed by the following
recursively defined function:

reach(𝜅, 𝛾, S) ≜ u↦→d⟨v⟩ ∗ reach(𝜅 − (u ↦→d⟨v⟩), 𝛾, S ∪ {v|v∈v, IsPtr(v)})
when ∃q∈S · (𝛾 =⇒ u=q) ∧ u↦→d⟨v⟩ ∈ 𝜅

reach(𝜅, 𝛾, S) ≜ P(v) ∗ reach(𝜅 − (P(v)), 𝛾, S ∪ {v|v∈v, IsPtr(v)})
when ∃q∈S, p∈v · (𝛾 =⇒ p=q) ∧ P(v) ∈ 𝜅

reach(𝜅, 𝛾, S) ≜ emp otherwise.

Note that 𝜅− 𝜅′ removes a term 𝜅′ from 𝜅, and IsPtr(v) determines if v is of type pointer.

Definition 3 (Well-formed formula) A separation formula is well-formed if:

• it is in a disjunctive normal form
∨
i (∃v · 𝜅i ∧ 𝜋i);

• all occurrences of heap nodes are reachable from its accessible variables, S. That is,
we have ∀i · 𝜅i = reach(𝜅i, 𝛾i, S) modulo associativity and commutativity of the
separation conjunction ∗.

The primary significance of the well-formed condition is that all heap nodes of a heap
constraint are reachable from accessible variables. This allows the entailment checking
procedure to correctly match nodes from the consequent with nodes from the antecedent
of an entailment relation.

Definition 4 (Well-founded Predicate) A shape predicate is said to be well-founded if it
satisfies the following conditions:
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• its body is a well-formed formula;
• given u as the special parameter which denotes the predicate’s root pointer, if the body

of the predicate contains some spatial formula, then u must be a heaplet of the form
u ↦→d⟨v⟩.

Informally, the primary significance of the well-founded predicates is to ensure the
monotonicity of the predicates which in turn guarantees the existence of a descending
chain of unfoldings. The need for this well-founded conditions is clearer in Sec. 1.3 while
showing how SLEEK solves the proof obligations generated by HIP.

1.2.3 Forward Verification Rules

The proof system is formalized using Hoare triples of the following form: ⊢ {Δpre} e {Δpost},
where e is the expression to be verified, the pre-state Δpre is given and the post-state
Δpost is computed. We next generalize this triple to support a set of possible post-states:
⊢ {Δpre} e {S}, where S is a residual set of heap states discovered by the proof-search-
based strategy adopted during the verification process. The verification is said to have
succeeded with Δpre as prestate if the residual set S is non-empty, and failed otherwise.

The verification rules are given in Fig. 1.4. The proof system engages a special variable
res to denote the result of evaluating the target expression. 𝜌 represents substitution,
and P is the program being verified. The rules FIELD−READ, FIELD−UPDATE, METH−DEF,
METH−CALL discharge proof obligations in the form of entailment relations written as
Δ1⊢Δ2 ∗ S and read as "if Δ1 is true, then Δ2 is also true with the possible residual states
S". In other words, the residual states are the witnesses that the respective proof obligation
holds. The technicalities behind the entailment checks are postponed to Sec. 1.3.

Most of the verification rules are standard. METH−DEF shows how to verify a method
definition annotated with p pairs of specifications. For each pair i of specifications,
the verifier starts by assuming the method’s i-th precondition, namely Φipr. It then
incrementally applies the other verification rules to verify that symbolically executing the
method’s body e leads to a set of post-states Si1 each of which entails the corresponding
post-condition Φipo. To note that a method takes in m pass-by-reference parameters and
n − m pass-by-value parameters. To capture how the method’s body changes the values of
the pass-by-reference parameters, we use the primed notation, e.g. for a parameter v, we
use v′ to denote its latest (current) value. The nochange function initializes the current
values of parameters to their initial (unprimed) values (the precondition Φipr is given only
in terms of unprimed variables). At the end of the procedure, the current (primed) values
of the pass-by-value parameters are existentially quantified from the post-state Φipo so that
their values are not visible by the postcondition, hence by the callers of the procedure.

METH−CALL is the rule for method call. At a high level, if a pre-condition, Φipr, is
satisfied at the call site then its corresponding post-condition, Φipo, is added to the state.
The pass-by-value parameters, V, are equated to their initial values through the nochange
function, since their final values are not visible to the method’s callers. The residual heap
state for each pair of specification, Si , from checking the method’s i-th pre-condition
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[CONST]
S = {Δ∧res=k𝜏 }
⊢ {Δ} k𝜏 {S}

[VAR]
S={Δ∧res=v}
⊢ {Δ} v {S}

[LOCAL]
⊢ {Δ} e {S}

⊢ {Δ} t v; e {∃ v, v′ · S}

[ASSIGN]
⊢ {Δ} e {S1} S2=∃res· (S1∧v′=res)

⊢ {Δ} v:=e {S2}

[FIELD−READ]
Δ ⊢v ↦→d⟨v1, .., vn⟩ ∗ S1 S1≠∅ fresh v1..vn
S2 = ∃v1..vn · (S1 ∗ v ↦→d⟨v1, .., vn⟩ ∧ res=vi )

⊢ {Δ} 𝑣. 𝑓𝑖 {S2}

[NEW]
S={Δ ∗ res ↦→d⟨v1, .., vn⟩}
⊢ {Δ} new d(v1, .., vn ) {S}

[FIELD−UPDATE]
Δ ⊢v ↦→d⟨v1, .., vn⟩ ∗ S1 S1≠∅ fresh v1..vn

S2 = ∃v1..vn · (S1 ∗ 𝜌(v′ ↦→d⟨v1, .., vn⟩) ) 𝜌=[v0/vi ]
⊢ {Δ} v.fi:=v0 {S2}

[RETURN]
⊢ {Δ} e {S1} S=∃v · (∃res · (S1 ∧ v=res) )

⊢ {Δ} return e {S}

[IF]
⊢ {Δ∧b} e1 {S1} ⊢ {Δ∧¬b} e2 {S2}

⊢ {Δ} if (b) e1 else e2 {S1∨S2}

[SEQ]
⊢ {Δ} e1 {S1} ⊢ {S1} e2 {S2}

⊢ {Δ} e1; e2 {S2}

[METH−DEF]
V={vm , .., vn} W={v′ | v ∈ V}

∀i = 1, .., p · ( ⊢ {Φipr ∧ nochange(V) } e {Si1} ∃W·Si1 ⊢Φipo ∗ Si2 Si2≠∅)

⊢ t mn( (ref tj vj )m−1j=1 , (tj vj )
n
j=m ) {requires Φ

i
pr ensures Φ

i
po}
p
i=1{e}

[METH−CALL]
t mn( (ref tj v0

j )
m−1
j=1 , (tj v

0
j )
n
j=m ) {requires Φ

i
pr ensures Φ

i
po}
p
i=1 {e} ∈ P

𝜌=[vj/v0
j ]
n
j=1 ∀i=1, .., p · (Δ⊢𝜌Φipr ∗ Si ) S =

⋃p
i=1 (Si ∗ 𝜌Φ

i
po ) S≠ ∅

⊢ {Δ} mn(v1, .., vn ) {S}

Fig. 1.4 Forward Verification Rules

is composed with its corresponding post-condition to become the post-state, S , of the
method call.

For brevity, we lifted the binary operations normally used for formulae composition,
namely ∗, ∧, ∨, to composition of sets and formulae in order to precisely capture the
residue of each proof rule (note that the separation conjunction operator ∗ is commutative,
associative, and distributive over disjunction). The normalization patterns that HIP/SLEEK
often engages are presented in Fig. 1.5.



1 Automated Verification with HIP/SLEEK and Second-Order Abductive Inference 11

𝜋 ∧ S ≡ {Δ𝑠 ∧ 𝜋 | Δ𝑠 ∈ S} (𝜅1 ∧ 𝜋1 ) ∗ (𝜅2 ∧ 𝜋2 ) ≡ 𝜅1 ∗ 𝜅2 ∧ 𝜋1 ∧ 𝜋2

S ∧ 𝜋 ≡ {Δ𝑠 ∧ 𝜋 | Δ𝑠 ∈ S} S1 ∨ S2 ≡ {Δ1 ∨ Δ2 | Δ1 ∈ S1, Δ2 ∈ S2}
Δ ∗ S ≡ {Δ𝑠 ∗ Δ | Δ𝑠 ∈ S} ∃𝑣 · (S ∧ 𝜋 ) ≡ {∃𝑣 · (Δ𝑠 ∧ 𝜋 ) | Δ𝑠 ∈ S}
S ∗ Δ ≡ {Δ𝑠 ∗ Δ | Δ𝑠 ∈ S} (∃𝑥 · Δ) ∧ 𝜋 ≡ ∃𝑦 · ( [𝑦/𝑥 ]Δ) ∧ 𝜋

(Δ1 ∨ Δ2 ) ∧ 𝜋 ≡ (Δ1 ∧ 𝜋 ) ∨ (Δ2 ∧ 𝜋 ) (∃𝑥 · Δ1 ) ∗ Δ2 ≡ ∃𝑦 · ( [𝑦/𝑥 ]Δ1 ) ∗ Δ2

Fig. 1.5 Normalization Rules

1.3 SLEEK – Entailment Checking

The proof obligations generated in Sec 1.2, abbreviated as heap entailments, are handled
by our entailment prover SLEEK. The formulas of the entailments are a combination of
separation logic and heap-independent logics, and are of the form

Δ𝐴 ⊢𝜅
𝑉
Δ𝐶 ∗ Δ𝑅

which is a consequence (or shortcut) for

𝜅 ∗ Δ𝐴 ⊢ ∃𝑉 · (𝜅 ∗ Δ𝐶 ) ∗ Δ𝑅

To prove the above entailment, we need to check whether the heaplet modelled by the
antecedent Δ𝐴 is sufficiently precise to cover all heaplets modelled by the consequent
Δ𝐶 . Furthermore, we also aim to compute the residual heap state Δ𝑅 (a.k.a the “frame”
condition [9]), which represents what was not consumed from the antecedent after
matching up with the formula form the consequent. 𝜅 is the history of nodes from the
antecedent that have been used to match nodes from the consequent, 𝑉 is the list of
existentially quantified variables from the consequent. Note that 𝜅 and 𝑉 are derived
during the entailment proof. The entailment checking procedure is initially invoked with
𝜅 = emp and 𝑉 = ∅. The entailment proving rules are explained as follows.

Handling entailments of disjunctive formulas

Firstly, we present the reduction from entailment between disjunctive formulas with
existential quantifiers to entailment between quantifier-free conjunctive formulas.

Removing disjunction. An entailment with a disjunctive antecedent succeeds if both
disjuncts entail the consequent (ENT−LHS−OR). Conversely, an entailment with disjunctive
consequent succeeds if either one of the disjuncts succeeds (ENT−RHS−OR).

[ENT−LHS−OR]
Δ1 ⊢𝜅

𝑉
Δ3 ∗ Δ4 Δ2 ⊢𝜅

𝑉
Δ3 ∗ Δ5

Δ1 ∨ Δ2 ⊢𝜅
𝑉
Δ3 ∗ (Δ4 ∨ Δ5 )

[ENT−RHS−OR]
Δ1 ⊢𝜅

𝑉
Δ𝑖 ∗ Δ𝑅

𝑖
𝑖 ∈ {2, 3}

Δ1 ⊢𝜅
𝑉

(Δ2 ∨ Δ3 ) ∗ Δ𝑅
𝑖

Removing existential quantifiers. Existentially quantified variables from the antecedent
are simply lifted out of the entailment relation by replacing them with fresh variables
(ENT−LHS−EX). On the other hand, we keep track of the existential variables coming from
the consequent by adding them to 𝑉 (ENT−RHS−EX).
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[ENT−RHS−EX]
Δ1 ⊢𝜅

𝑉∪{w} ( [w/v]Δ2 ) ∗ Δ fresh w

Δ1 ⊢𝜅
𝑉

(∃v · Δ2 ) ∗ Δ

[ENT−LHS−EX]
[w/v]Δ1 ⊢𝜅

𝑉
Δ2 ∗ Δ fresh w

∃v · Δ1 ⊢𝜅
𝑉
Δ2 ∗ Δ

Handling entailments of conjunctive formulas

We now present the reduction of entailment between two quantifier-free conjunctive
formulae to entailment between two pure formulae.

Handling consequent with empty heap. The base case for our entailment checker occurs
when the consequent is a pure formula, in which case the ENT−EMP rule is applied. The
rule first approximates the antecedent of the entailment, including the footprint heap
formulae 𝜅 that have been matched previously. The approximation is done by the XPure
function which taken a heap formula as input and outputs its pure approximation, e.g.
the information that a pointer 𝑝 points to a valid memory location, p↦→node⟨x, y⟩, is
approximated by the pure formula p ≠ null. The full definition of XPure is deferred to
the end of this sub-chapter. The checker next invokes an off-the-shelf theorem prover to
check if the approximation of the antecedent implies the heap-independent consequent.

[ENT−EMP]
XPure𝑛 (𝜅1 ∗ 𝜅 ) ∧ 𝜋1 ⇒ ∃𝑉 · 𝜋2

𝜅1 ∧ 𝜋1 ⊢𝜅
𝑉
emp ∧ 𝜋2 ∗ (𝜅1 ∧ 𝜋1 )

Matching and removing heap nodes from the antecedent and the consequent. The rule
ENT−MATCH successively matches up heap nodes that can be proven aliased.

[ENT−MATCH]
XPure𝑛 (u1 ↦→d⟨v1⟩ ∗ 𝜅1 ∧ 𝜋1 ) ⇒ u1=u2

𝜌 = [v1/v2 ] 𝜅1 ∧ 𝜋1 ∧ freeEqn(𝜌, 𝑉 ) ⊢𝜅∗u1 ↦→d⟨v1⟩
𝑉−{v2}

𝜌(𝜅2 ∧ 𝜋2 ) ∗ Δ

u1 ↦→d⟨v1⟩ ∗ 𝜅1 ∧ 𝜋1 ⊢𝜅
𝑉

(u2 ↦→d⟨v2⟩ ∗ 𝜅2 ∧ 𝜋2 ) ∗ Δ

In the above rule, the condition XPure𝑛 (u1 ↦→d⟨v1⟩∗𝜅1∧𝜋1) ⇒ u1=u2 checks whether
u1 and u2 are aliasing based on the information in the antecedent. If two atomic heap
formulas have the same name, that is, they are either two heaplets of the same type, or
two instances of the same predicate, we require their fields or, respectively, arguments to
be the same. The unification of the two heap formulas is accomplished by the application
of substitution 𝜌 to the remaining of the consequent. Since v2 is substituted away, it is
removed from the list of existentially quantified variables.

When a match occurs and an argument of the heap node coming from the consequent
is free, the entailment procedure binds the argument to the corresponding variable from
the antecedent and moves the equality to the antecedent. In our system, free variables
in consequent are variables from method preconditions. These bindings play the role
of parameter instantiations during forward reasoning and can be accumulated into the
antecedent to allow the subsequent program state (from the residual heap state) to be
aware of their instantiated values. This process is formalized by function freeEqn, where
𝑉 is the set of existentially quantified variables:

freeEqn( [u𝑖/v𝑖 ]𝑛𝑖=1, 𝑉 ) ≜ let 𝜋𝑖 = (if u𝑖 ∈ 𝑉 then true else v𝑖 = u𝑖 )
in

∨𝑛
𝑖=1 𝜋𝑖
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For soundness, we perform a preprocessing step to ensure that variables appearing
as arguments of heap nodes and predicates are (i) distinct and (ii) if they are free, they
do not appear in the antecedent by adding (existentially quantified) fresh variables and
equalities. This guarantees that the formula generated by freeEqn does not introduce any
additional constraints over existing variables in the antecedent.

Unfolding a shape predicate in the antecedent. If a predicate instance in the antecedent
is aliased with a point-to predicate in the consequent, we unfold it by using the rule
ENT−UNFOLD below.

[ENT−UNFOLD]
XPure𝑛 (P(u1, v1 ) ∗ 𝜅1 ∧ 𝜋1 ) ⇒ u1=u2

unfold(P(u1, v1 ) ) ∗ 𝜅1 ∧ 𝜋1 ⊢𝜅
𝑉

(u2 ↦→d⟨v2⟩ ∗ 𝜅2 ∧ 𝜋2 ) ∗ Δ

P(u1, v1 ) ∗ 𝜅1 ∧ 𝜋1 ⊢𝜅
𝑉

(u2 ↦→d⟨v2⟩ ∗ 𝜅2 ∧ 𝜋2 ) ∗ Δ

where the function unfold is defined as follows:
P(v) ≜ Φ inv 𝜋

unfold(P(u) ) ≜ [u/v]Φ
The above rule basically replaces the predicate instance by its predicate definition,

normalizes the resulting formula, and resumes entailment checking. Each unfolding either
exposes an object that matches the object in the consequent, or reduces the atomic heap
formula in the antecedent u1 ↦→d⟨v1⟩ to a pure formula. The former case results in a
reduction of the consequent by using ENT−MATCH. In the latter case, the entailment either
(i) fails immediately since the checker is unable to find an aliased heap node, or (ii) if
the obtained pure formula reveals additional aliasing information, the entailment checker
continues with a new aliased heap node from the antecedent. If the new aliased heap
node is an object, a match and thus a reduction of the consequent occurs. Otherwise, a
new unfolding is triggered. This process cannot go forever as every time it happens, one
predicate from the antecedent is removed and no new predicate instance is generated.

Folding against a shape predicate in the consequent. If a predicate instance in the
consequent does not have a matching predicate instance in the antecedent, we attempt to
generate one by folding the antecedent (ENT−FOLD).

[ENT−FOLD]
(Δ𝑟 , 𝜅𝑟 , 𝜋𝑟 ) ∈ fold𝜅 (u1 ↦→d⟨v1⟩ ∗ 𝜅1 ∧ 𝜋1, P(u2, v2 ) ) (𝜋1, 𝜋𝑐 ) = split{v2}

𝑉
(𝜋𝑟 )

XPure𝑛 (u1 ↦→d⟨v1⟩ ∗ 𝜅1 ∗ 𝜋1 ⇒ u1=u2 ) Δ𝑟 ∧ 𝜋𝑎 ⊢𝜅𝑟
𝑉

(𝜅2 ∧ 𝜋2 ∧ 𝜋𝑐 ) ∗ Δ

u1 ↦→d⟨v1⟩ ∗ 𝜅1 ∧ 𝜋1 ⊢𝜅
𝑉

(P(u2, v2 ) ∗ 𝜅2 ∧ 𝜋2 ) ∗ Δ

where the function fold is defined as follows:
P(v) ≜ Φ inv 𝜋 𝜅 ∧ 𝜋 ⊢𝜅 ′{u,v} [u/v]Φ ∗ { (Δ𝑖 , 𝜅𝑖 , 𝑉𝑖 , 𝜋𝑖 ) }𝑛𝑖=1 𝑊𝑖 = 𝑉𝑖 − {v, u}

fold𝜅 (𝜅 ∧ 𝜋, P(u) ) ≜ { (Δ𝑖 , 𝜅𝑖 , ∃𝑊𝑖 · 𝜋𝑖 ) }𝑛𝑖=1

Some heap nodes from 𝜅 are removed by the entailment procedure in the fold definition
so as to match with the heap formula of the predicate P(v). This requires a special version
of entailment that returns three extra things: (i) the consumed heap nodes, 𝜅𝑖 , (ii) the
existential variables used, 𝑊𝑖 , and (iii) the final consequent, Δ𝑖 . The final consequent
is used to return a constraint for {𝑣} via ∃𝑊𝑖 · 𝜋𝑖 . A set of 𝑛 answers is returned by the
fold step since we allow it to explore multiple ways of matching up with its disjunctive
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heap state (as depicted by the entailment’s special set residue {(Δ𝑖 , 𝜅𝑖 , 𝑉𝑖 , 𝜋𝑖)}𝑛𝑖=1 – note
that only Δ𝑖 is an actual heap residue, the rest of the tuple’s elements are additional
information required to fill up by the ENT−FOLD entailment rule).

When a fold against a predicate p(u2, v2) is performed, the constraints related to
variables v2 are significant. The split function projects these constraints out and
differentiates those constraints based on free variables, distinguishing what can be
assumed, 𝜋𝑎

𝑖
, from what needs to be proved to hold true, (𝜋𝑐

𝑖
). The formal definition of

split is as follows:

split{v2}
𝑉

(∧𝑛
𝑖=1 𝜋𝑟

𝑖
) ≜ let 𝜋𝑎

𝑖
, 𝜋𝑐

𝑖
= if FV(𝜋𝑟

𝑖
) ∩ v2 = ∅ then (true, true)

else if FV(𝜋𝑟
𝑖
) ∩ 𝑉 = ∅ then (𝜋𝑟

𝑖
, true)

else (true, 𝜋𝑟
𝑖
)

in (∧𝑛
𝑖=1 𝜋𝑎

𝑖
,
∧𝑛

𝑖=1 𝜋𝑐
𝑖
)

In other words, split helps distinguishing between the pure constraints which are the
result of the fold operation introducing bindings for the parameters of the folded predicate,
from the pure constraints which are in the definition of the folded predicate. The former
are transferred to the antecedent, while the latter remain in the consequent since they need
to be proven to hold.

Approximating a separation formula by a pure formula

In our entailment proof, the entailment between separation formulae is finally reduced
to entailment between pure formulae by successively removing heap nodes from the
consequent until only a pure formula remains. When this happens, the heap formula in
the antecedent can be soundly approximated by the XPure𝑛 function to obtain a pure
(heap-independent) formula which can be discharged by a theorem prover. In this function,
the index n indicates how precise the caller wants the approximation to be. The function
XPure𝑛 is recursively defined as follows:

– XPure𝑛 (emp) ≜ true
– XPure𝑛 (u ↦→d⟨v⟩) ≜ u ≠ null
– XPure𝑛 (P(v) ) ≜ Inv𝑛 (P(v) )
– XPure𝑛 (𝜅1 ∗ 𝜅2 ) ≜ XPure𝑛 (𝜅1 ) ∧ XPure𝑛 (𝜅2 )
– XPure𝑛 (

∨𝑛
𝑖=1 (∃vi · (𝜅𝑖 ∧ 𝜋𝑖 ) ) ) ≜

∨𝑛
𝑖=1 (∃vi · (XPure𝑛 (𝜅𝑖 ) ∧ 𝜋𝑖 ) )

In the above definition, XPure𝑛 calls a related function Inv𝑛 to compute the pure
approximation. This function Inv𝑛 is defined as follows.

P(v) ≜ Φ inv 𝜋0

Inv0 (P(v) ) ≜ 𝜋0

P(v) ≜ Φ inv 𝜋0

Inv𝑛 (P(v) ) ≜ XPure𝑛−1 (Φ)

Specifically, when n=0, Inv𝑛 returns the user-supplied invariant. In the recursive case,
n>0, Inv𝑛 invokes XPure𝑛−1 to compute a more precise invariant based on the body of
the predicate. When the invariant is not provided, our system relies on those satisfiability
solvers that can handle separation logic with inductive predicates [52, 55, 57].
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1 data node {node prev; node next; }

3 void sll2dll(node x, node q)
4 { // 𝑆1 : H(x, q#)
5 if(x!=NULL) {
6 // 𝑆2 : x ↦→node⟨xp, xn⟩∗Hp (xp, q#)∗Hn (xn, q#)∧x≠null
7 x.prev=q;
8 // 𝑆3 : x ↦→node⟨q, xn⟩∗Hp (xp, q#)∗Hn (xn, q#)∧x≠null
9 sll2dll(x.next,x);

10 //𝑆4 : x ↦→node⟨q, xn⟩∗Hp (xp, q#)∗G(xn, x#)∧x≠null
11 }
12 //𝑆5 : H(x, q#)∧x=null
13 }

Fig. 1.6 Example

1.4 Specification Inference

Specification inference is a technique that uses static analysis to synthesize formal
specifications in order to capture some properties of a given program. HIP infers
specification to capture the shape of the manipulating heap regions (to ensure memory
safety) as well as functional properties (e.g., constraints over pure variables) and non-
functional properties (e..g, termination and non-termination) for heap-based programs.
The specification inference mechanism in HIP/SLEEK system is based on a new second-
order bi-abductive entailment with unknown predicates (a.k.a., second-order variables). It
constructs sound interpretations for the unknown predicates during code verification [53,
91] by generating relational assumptions that capture predefined analysis properties for
the unknown predicates. The specification is inferred incrementally: first with shape
property and then other pure (non-shape) properties. Typically, shape-based specification
is inferred through predicate definition derivation and normalization steps. Pure-based
specification is inferred through pure-property extension and fixed point computation.

In the following, we first show our approach through an example (Subsection 1.4.1).
After that, we describe the second-order formalism (Subsection 1.4.2). Finally, we present
the Hoare logic for specification inference (Subsection 1.4.3).

1.4.1 Illustrative Example

As a running example, consider the method shown in Figure 1.6 which traverses a
singly-linked list, and gradually changes the input list into a doubly-linked list.

To capture the specification that ensures the memory safety for this method, we could
use the following inductive predicates.

sllN(hd, n) ≡ emp∧hd=null ∧ 𝑛=0 ∨ ∃𝑛𝑥. hd ↦→node⟨_, nx⟩∗sllN(nx, n−1)
dllN(hd, p, n) ≡ emp∧hd=null ∧ 𝑛=0 ∨ ∃𝑛𝑥. hd ↦→node⟨p, nx⟩∗dllN(nx, hd, n−1)
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Here, the sllN predicate describes the shape of an acyclic singly-linked list pointed by
hd. In its definition, the first disjunct corresponds to the case of an empty list, whereas
the second one separates a list into two parts: the head hd↦→node⟨_ , nx⟩, and the tail
sllN(nx, n−1). Similarly, the dllN predicate describes the shape of an acyclic doubly-
linked list pointed by hd. With these predicates, we can write a specification that ensures
memory safety for this method through the following pair of pre/post conditions.

requires sllN(x, n) ensures dllN(x, q, n) ∧ 𝑛≥0

Once predicate definitions and pre/post specifications for the method are given, the
automated verification system (as presented in the preceding sections) could verify that all
memory accesses are safe, and that the post-condition of the method is ensured, namely
that a doubly-linked list of the same size as the list in the pre-condition has been created.
Our shape inference framework endeavours to undertake the reverse scenario where
predicate definitions are not given a priori. Instead, to trigger the incremental inference in
the HIP system, the end user only needs to annotate the following command:

infer [@𝑠ℎ𝑎𝑝𝑒,@𝑠𝑖𝑧𝑒,@𝑝𝑟𝑒,@𝑝𝑜𝑠𝑡]
requires true ensures true

where the parameter of the infer command describes all stages which are to be
considered during the inference: @𝑠ℎ𝑎𝑝𝑒 for shape inference, @𝑠𝑖𝑧𝑒 for the size property
extension, and @𝑝𝑟𝑒 (resp., @𝑝𝑜𝑠𝑡) for the pure constraint in the pre-condition (resp.,
post-condition) inference. In the following, we illustrate how the HIP system could infer
the above specification via second-order bi-abduction [53, 91].

Shape Inference. The shape inference in HIP relies on capabilities of shape analysis.
Given a program, the shape analysis infers shapes of dynamic linked data structures
pointer by pointer at program locations that are required for memory safety. Shape analysis
mechanisms typically infer specifications for memory safety with a predetermined set of
shape predicates [6, 9, 10, 64]. Discovering arbitrary shape abstractions is challenging, as
linked data structures span a wide variety of forms, from singly-linked lists, doubly-linked
lists, circular lists, to tree-like data structures. Furthermore, such abstractions would also
need to cater to various specializations, such as strictly non-empty structures or segmented
structures (e.g. list/tree segments) with outward pointing references. We now show how to
infer complicated shape specifications, from scratch, directly from heap-based programs.

By command infer [@𝑠ℎ𝑎𝑝𝑒], HIP internally introduces two unknown predicates,
H and G, as the place-holders to capture the shape specification for the pre-condition and
the post-condition, respectively, in the following specification.

infer [H, G]
requires H(x, q#) ensures G(x, q#)

Intuitively, it is meant to incorporate the inference capability (via infer) into a pair
of pre/post-conditions (via requires/ensures). Here the inference will be applied
to second-order variables H, G. For clarity, we use H1, H2, . . . as names for unknown
pre-predicates and G1, G2, . . . as names for unknown post-predicates. Note that we control
the instantiation of variables by using annotation # to mark those variables that are
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disallowed from being instantiated. This scheme ensures that each pointer is instantiated
at most once, thus avoiding false from being inferred.

The three steps of our shape inference are: (i) Derive relational assumptions during
code verification using second-order bi-abduction; (ii) Derive predicate definitions from
relational assumptions by abductive or equivalence-preserving transformation; and (iii)
Normalize and, whenever possible, substitute available predicates for unknowns to support
reuse. Firstly, we apply code verification using these pre/post specification and attempt to
infer program states 𝑆1, .., 𝑆5 (of the form of separation logic formulas as shown in Figure
1.6) as well as to collect a set of verification conditions (VCs) that must hold to ensure
memory-safety. These conditions also ensure that the pre-conditions of each method call
are satisfied, and that the post-condition is ensured at the end of its method body. Each VC
is a relational assumption of the form Δa | Δg ⇒ Δc where Δa, Δ𝑔, and Δc may contain
the unknown predicates.

For sll2dll method, HIP can derive the following four relational assumptions:

H(x, q#) ∧ x≠null ⇒ x↦→node⟨xp, xn⟩∗Hp (xp, q#)∗Hn (xn, q#)
Hn (xn, q#) | x ↦→node⟨q, xn⟩ ⇒ H(xn, x#)
H(x, q#) ∧ x=null ⇒ G(x,q#)
x↦→node⟨q,xn⟩∗G(xn,x#) ⇒ G(x,q#)

The first assumption is generated by the access to the x.prev field, which mandated
that H(x, q#) generates a node under a condition x≠null, from the then branch of its
conditional statement. The second assumption is for modularly proving the precondition
of the recursive call to sll2dll(x.next, x). The last two assumptions are required to
ensure the ascribed post-condition of the sll2dll method hold for both branches (the
else branch is implicit).

There are several new features that we have designed into our relational assumptions.
Firstly, we may introduce new unknown predicates, such as Hp and Hn, so as to provide
possible expansion (or instantiation) points for yet to be explored data fields. Secondly, we
use a #-annotation scheme to carefully ensure that each pointer is instantiated at most once.
This is to prevent us from accidentally creating an unsatisfiable false state when a pointer
is instantiated more than once. Our annotation scheme is fully automatic as we have
developed a simple static analysis to determine the #-annotation for the initial pre/post
predicates. In the case of the sll2dll example, we will mark the second parameter of
both predicates H and G as non-instantiating, i.e. H(x, q#) and G(x, q#), since it is never
field-accessed in the code. Thirdly, we allow a special heap guard introduced after | (e.g.
x ↦→node⟨q, xn⟩ in the second assumption), to clearly describe the heap context where the
relational assumption was applicable. This heap guard is used to guide the instantiation
of some parameters (e.g. x#), and is critical for properly handling back-pointers (such as
previous or parent pointers). The guard simply qualifies Hn (xn, q#)⇒H(xn, x#), requiring
the availability of heap context x↦→node⟨q, xn⟩.

Based on this set of relational assumptions, it is possible to construct an interpretation
for the unknown predicates H, G, and Hn that ensure the validity of these assumptions. As
for Hp, we would refrain from imposing any interpretation since its contents are not
being accessed by the sll2dll method. We refer to predicates without any interpretation
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as dangling predicates since they denote dangling references that are not being accessed
by the current method.

Our next phase uses a predicate derivation procedure to transform (by either equivalence-
preserving or abductive steps) each set of relational assumptions into its corresponding set
of predicate definitions. This procedure uses sound heuristics, and thus may occasionally
fail to discover best possible predicate definitions. For our running example, we can
generate the following three predicate definitions, after replacing each dangling predicate,
e.g. Hp (xp, q), that came from expanding a field by a unique global variable (e.g. Dp)
which denotes the set of (unconstrained) references from its (e.g. prev) field. For this
example, the dangling reference is captured recursively within H(x, q), and denotes
multiple prev fields of the singly-linked list that were overwritten in the post-condition.
Note that both H(x, q#) ∧ x=null⇒emp and emp∧x=null⇒G(x,q#) are derived by
splitting from a single relational assumption H(x, q#) ∧ x=null⇒G(x,q#).

The definition of Hn is in a special guarded form to facilitate the instantiation of
back-pointers. Instances of such guarded definitions can always be inlined, so that
they are never required in our final specifications. (In both assumption Δlhs⇒Δrhs
and definition Δlhs≡Δrhs, the free variables from FV(Δrhs)−FV(Δlhs) are implicitly
existentially quantified.)

H(x, q) ≡ emp∧x=null ∨ x↦→node⟨Dp, xn⟩∗H(xn, x)
Hn (xn, q) | x ↦→node⟨q, xn⟩ ≡ H(xn, x)
G(x, q) ≡ emp∧x=null ∨ x↦→node⟨q, xn⟩∗G(xn, x)

After deriving all predicate definitions, we proceed with the last phase on normalization
to simplify and reuse predicates, where possible [53, 56]. This phase would eliminate the
second parameter of H and the unused predicate, Hn (x, p), yielding:

H(x, q) ≡ H2 (x)
H2 (x) ≡ emp∧x=null ∨ x↦→node⟨Dp, xn⟩∗H2 (xn)
G(x, q) ≡ emp∧x=null ∨ x↦→node⟨q, xn⟩∗G(xn, x)

Note that H2 (x) is a specialized version of H(x, q) without the redundant q parameter.
Whenever possible, we would also attempt to reuse existing predicate definitions to support
shorter specifications and improve analysis/verification. If the following predicates sll
and dll definitions have been supplied earlier,

sll(hd) ≡ emp∧hd=null ∨ ∃𝑛𝑥. hd↦→node⟨_, nx⟩∗sll(nx)
dll(hd, p) ≡ emp∧hd=null ∨ ∃𝑛𝑥. hd↦→node⟨p, nx⟩∗dll(nx, hd)

we would relate our new definitions to these prior definitions, as follows.

H2 (x) ≡ sll(x) G(x, q) ≡ dll(x, q)

Pure-Property Extension. By the infer [@𝑠𝑖𝑧𝑒] command, the user triggers an
inference for the size constraints. Through the predicate extension mechanism, HIP injects
the size property (captured by n) into the predicate sll to derive a predicate llN as:
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pred llN(hd, n) ≜ (emp∧hd=null ∧ n=0)
∨ ∃ nx, m·(hd ↦→node⟨_ , nx⟩ ∗ llN⟨nx, m⟩ ∧ n=m+1).

Similarly, the dllN predicate is generated as follows:

pred dllN(hd, p, n) ≜ (emp∧hd=null ∧ n=0)
∨ ∃ nx, m·(hd ↦→node⟨q, nx⟩ ∗ dllN⟨nx, hd, m⟩ ∧ n=m+1).

The current size extension mechanism simply adds a depth computation for each of
the recursive predicates in separation logic.

Pure Inference. By the command infer [@𝑝𝑟𝑒,@𝑝𝑜𝑠𝑡], (i.e. the user would like
to infer the specification with the size of each list), HIP internally strengthens the pre/post
specification for sll2dll to include uninterpreted relations: P(a) in the precondition and
Q(a, b) in the postcondition as follows.

infer [P, Q]
requires sllN(x, q, a) ∧ P(a)
ensures dllN(x, q, b) ∧ Q(a, b);

Here, the inference will be applied to the second-order variables P, Q. They are meant
to capture the relationship between the newly-introduced variables a, b denoting size
properties of linked lists. Uninterpreted relations in the precondition should be as weak as
possible, while ones in the postcondition should be as strong as possible. By analysing
the sll2dll code, HIP gathers the following relational assumptions:

P(a) ∧ a=ar+1 =⇒ P(ar),
P(a) ∧ a=0 ∧ b=0 =⇒ Q(a, b),
P(a)∧an=a−1∧bn=b−1∧Q(an, bn) =⇒ Q(a, b).

Using suitable fix-point analysis techniques, we can synthesize the approximations which
would add a pure post-condition b=a for the size properties. More specifically, we have
P(a) ≡ true, Q(a, b) ≡ a=b ∧ b≥0 and a new specification that ensures memory safety:

requires sllN(x, a)
ensures dllN(x, q, b) ∧ b=a ∧ b≥0;

1.4.2 Second-Order Entailment Procedure

The bi-abductive entailment formalism in HIP system is of the following form

[𝑣1, .., 𝑣𝑛] Δ1 ⊢ Δ2 { (𝜙𝑝 ,Δ𝑟 ,R)

where the left-hand side of{ is its input and the right-hand side is the output (Δ𝑟 is the
residua heap). The procedure infers the output s.t. the following entailment holds:

R ∧ Δ1 ∧ 𝜙𝑝 ⊨ Δ2∗Δ𝑟
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Three new features are added here to support incremental inference:

• We specify a set of variables [𝑣1, .., 𝑣𝑛] for which inference is to be applied. When
the list is empty, the entailment system reduces to forward verification without any
inference capability.

• We allow second-order variables, in the form of uninterpreted relations, to support
incremental inference for pre/post specifications.

• We then collect a set of constraints captured by either 𝜙𝑝 (for the first-order selective
variables) and a set of relational assumptions R (for the second-order variables) of the
form R =

⋃𝑛
𝑖=1 (Δ𝑖 | Δ𝑔 ⇒ Δ′

𝑖
). R provides a set of interpretations for second-order

variables. and can also be represented by a conjunction of the inferred constraints.

Shape Inference. There are two scenarios to consider for unknown predicates: (1) Δ1
contains an unknown predicate instance that matched with a points-to or known predicate
in Δ2; (2) Δ2 contains an unknown predicate instance.

An example of the first scenario is (where the data structure snode is defined as
data snode { snode next}):

[U] U(x) ⊢ x↦→snode⟨n⟩ { (U(x)⇒x↦→snode⟨n⟩∗U0 (n), true, U0 (n))

Here, we generated a relational assumption to denote an unfolding (or instantiation) for
the unknown predicate U to a heap node snode followed by another unknown U0 (n)
predicate. An example of the second scenario is shown next.

[U1] x↦→snode⟨null⟩∗y ↦→snode⟨null⟩ ⊢ U1 (x)
{ (true, x↦→snode⟨null⟩⇒U1 (x), y ↦→snode⟨null⟩)

The generated relational assumption depicts a folding process for unknown U1 (x) which
captures a heap state traversed from the pointer x. Both folding and unfolding of unknown
predicates are crucial for second-order bi-abduction.

Bi-abductive unfold and fold are formalized in Fig. 1.7. For bi-abductive unfold,
▽(�̄�, 𝜋) is an auxiliary function that existentially quantifies in 𝜋 all free variables that
are not in the set �̄�. Thus it eliminates from 𝜋 all subformulas not related to �̄� (e.g.
▽({𝑥, 𝑞}, 𝑞=null∧𝑦>3) returns 𝑞=null). An RHS assertion is either a points-to assertion
r ↦→c⟨—p⟩ or a known predicate instance P(r, —p) is paired through the parameter r with the
unknown predicate U. Second, the unknown predicates Uj are generated for the data fields
of 𝜅s. Third, the unknown predicate Urem is generated for the instantiatable parameters
—vi of U. The fourth and fifth lines compute relevant pure formulas and generate the
assumption, respectively. Finally, the unknown predicates 𝜅fields and 𝜅rem are combined
in the residue of LHS to continue discharging the remaining formula in RHS.

For bi-abductive fold, the function reach(—w, 𝜅1∧𝜋1, —z#) extracts portions from the
antecedent heap (𝜅1) that are (1) unknown predicates containing at least one instantiatable
parameter from —w; or (2) points-to or known predicates reachable from —w, but not reachable
from —z. The heaps(Δ) function enumerates all known predicate instances (of the form
P(—v)) and points-to instances (of the form r↦→c⟨—v⟩)) in Δ. The function root(𝜅) is defined
as: root(r ↦→c⟨—v⟩))={r}, root(P(r, —v)) = {r}. In the first line, heaps of LHS are separated
into the assumption 𝜅11 and the residue 𝜅12. Second, heap guards (and their root pointers)
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[INF−UNFOLD]
𝜅s ≡ r ↦→c⟨—p⟩ or 𝜅s ≡ P(r, —p)

𝜅fields = ∗pj∈—p Uj (pj, —vi#, —vn#) where Uj: fresh preds
𝜅rem = Urem (—vi, —vn#, r#) where Urem: a fresh pred
𝜋a = ▽({r, —vi, —vn, —p}, 𝜋1 ) 𝜋c = ▽({—p}, 𝜋2 )

A ≡ (U(r, —vi, —vn#) ∧ 𝜋a ⇒ 𝜅s ∗𝜅fields ∗𝜅rem ∧ 𝜋c )
[𝑣∗ ] 𝜅1 ∗ 𝜅 𝑓 𝑖𝑒𝑙𝑑𝑠 ∗𝜅𝑟𝑒𝑚 ∧ 𝜋1 ⊢ 𝜅2 ∧ 𝜋2 { (true, R, Δ𝑅 )

[U, 𝑣∗ ] U(r, —vi, —vn#)∗𝜅1∧𝜋1 ⊢ 𝜅𝑠∗𝜅2∧𝜋2 { (true, A∧R, Δ𝑅 )
[INF−FOLD]

𝜅11=reach(—w, 𝜅1∧𝜋1, —z#) ∃𝜅12 · 𝜅1=𝜅11∗𝜅12
𝜅g = ∗{𝜅 | 𝜅∈heaps(𝜅12 )∧root(𝜅 )⊆—z} —r=

⋃
𝜅∈𝜅g root(𝜅 )

A ≡ (𝜅11∧▽(—w, 𝜋1 ) ⇒ Uc (—w, —z#) | 𝜅g∧▽(—r, 𝜋1 ) )
[𝑣∗ ] 𝜅12 ∧ 𝜋1 ⊢ 𝜅2 ∧ 𝜋2 { (true, R, Δ𝑅 )

[Uc, 𝑣∗ ] 𝜅1 ∧ 𝜋1 ⊢ Uc (—w, —z#) ∗ 𝜅2 ∧ 𝜋2 { (true, A∧R, Δ𝑅 )

Fig. 1.7 Bi-Abductive Unfolding and Folding.

[INF−AND]
[𝑣∗ ] 𝜋1 ⊢ 𝜋2 { (𝜙2, Δ2, R2 ) [𝑣∗ ] 𝜋1 ⊢ 𝜋3 { (𝜙3, Δ3, R3 )

[𝑣∗ ] 𝜋1 ⊢ 𝜋2∧𝜋3 { (𝜙2∧𝜙3, Δ2∧Δ3, R2∪R3 )
[INF−UNSAT]
UNSAT(𝛼1 )

[𝑣∗ ] 𝛼1 ⊢ 𝛼2 { (true, false, ∅)

[INF−VALID]
𝛼1 ⇒ 𝛼2

[𝑣∗ ] 𝛼1 ⊢ 𝛼2 { (true, 𝛼1, ∅)
[INF−LHS−CONTRA]

𝜙 = ∀(FV(𝛼1 )−𝑣∗ ) · ¬𝛼1
UNSAT(𝛼1∧𝛼2 ) 𝜙≠false

[𝑣∗ ] 𝛼1 ⊢ 𝛼2 { (𝜙, false, ∅)

[INF−PRE−DERIVE]
𝜙=∀(FV(𝛼1, 𝛼2 )−𝑣∗ ) · (¬𝛼1∨𝛼2 )

𝜙≠false
[𝑣∗ ] 𝛼1 ⊢ 𝛼2 { (𝜙, 𝛼1∧𝜙, ∅)

[INF−REL−DEFN]
[𝑣∗, 𝑣𝑟𝑒𝑙 ] 𝜋 ⊢ 𝑣𝑟𝑒𝑙 (𝑢∗ ) { (true, true, {𝜋→𝑣𝑟𝑒𝑙 (𝑢∗ ) } )

[INF−REL−OBLG]
[𝑢∗ ] 𝛼1 ⊢ 𝛼2 { (𝜙1, Δ1, ∅) [𝑣∗ ] 𝛼1 ⊢ 𝛼2 { (𝜙2, Δ2, ∅)
[𝑣∗, 𝑣𝑟𝑒𝑙 ] 𝛼1∧𝑣𝑟𝑒𝑙 (𝑢∗ ) ⊢ 𝛼2 { (𝜙2, Δ1∧Δ2, {𝑣𝑟𝑒𝑙 (𝑢∗ )→𝜙1})

Fig. 1.8 Pure Bi-Abduction Rules

are inferred based on 𝜅12 and the #-annotated parameters —z. The assumption is generated in
the third line and finally, the residual heap is used to discharge the remaining heaps of RHS.

Pure Inference. When both the antecedent and the consequent are heap free, the rules in
Figure 1.8 for pure inference can apply. Take note that these rules are to be applied in a
top-down and left-to-right order.

• INF−[AND] repeatedly breaks the conjunctive consequent into smaller components.
• INF−[UNSAT] and INF−[VALID] infer true precondition whenever the entailment already

succeeds. Specifically, the rule INF−[UNSAT] applies when the antecedent 𝛼1 of the
entailment is unsatisfiable, whereas the rule INF−[VALID] is used if INF−[UNSAT] cannot
be applied, meaning that the antecedent is satisfiable.
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• The pure precondition inference is captured by two rules INF−[LHS−CONTRA] and
INF−[PRE−DERIVE]. While the first rule handles antecedent contradiction, the second
one infers the missing information from the antecedent required for proving the
consequent. Specifically, whenever a contradiction is detected between the antecedent
𝛼1 and the consequent 𝛼2, then the rule INF−[LHS−CONTRA] applies and the precondition
∀(FV(𝛼1)−𝑣∗) · ¬𝛼1 contradicting with the antecedent is being inferred. Note that
FV(· · · ) returns the set of free variables from its argument(s), while 𝑣∗ is a shorthand
notation for 𝑣1, .., 𝑣𝑛

1. On the other hand, if no contradiction is detected, then the rule
INF−[PRE−DERIVE] infers a sufficient precondition required for proving the consequent.

• The last two rules INF−[REL−DEFN] and INF−[REL−OBLG] are meant to gather definitions
and obligations, respectively, for the uninterpreted relation 𝑣𝑟𝑒𝑙 (𝑢∗). For simplicity, in
the rule INF−[REL−OBLG], we just formalize the case when there is only one uninterpreted
relation in the antecedent.

For example, to illustrate how the selective inference works, consider three entailments
below with x ↦→node⟨_, q⟩ as a consequent:

[n] sllN⟨x, n⟩ ⊢ x↦→node⟨_, q⟩ { (n>0, sllN⟨q, n−1⟩, true)
[x] sllN⟨x, n⟩ ⊢ x↦→node⟨_, q⟩ { (x≠null, sllN⟨q, n−1⟩, true)
[n, x] sllN⟨x, n⟩ ⊢ x↦→node⟨_, q⟩ { (n>0∨x≠null, sllN⟨q, n−1⟩, true)

Predicate sllN⟨x, n⟩ by itself does not entail a non-empty node. For the entailment
checking to succeed, the current state would have to be strengthened with either x≠null
or n>0. Our procedure can decide on which pre-condition to return, depending on the set
of variables for which pre-conditions are to be built from. The selectivity is important
since we only consider a subset of variables (e.g. a, b, r), which are introduced to capture
pure properties of data structures.

1.4.3 Specification Inference via Hoare-Style Rules

To support specification inference via second-order bi-abduction, we extend the Hoare-
style forward rule presented in Section 1.2 to the form: [𝑣∗] ⊢ {Δ1} 𝑐 {𝜙2,Δ2,R2} with
three additional features (i) a set of specified variables [𝑣∗] (ii) an extra precondition
𝜙2 that must be added (iii) a set of definitions and obligations R2 on the uninterpreted
relations. The selectivity criterion will help ensure that 𝜙2 and R2 come from only the
specified set of variables, namely {𝑣∗}. If this set is empty, our new rule is simply a
special case that only performs verification, without any inference.

Figure 1.9 captures a subset of our Hoare rules with bi-abduction. For each method call,
we must ensure that its precondition is satisfied, and then add the expected postcondition
into its residual state, as illustrated in [INF−METH−CALL]. Here, (𝑡𝑖 𝑣𝑖)𝑚−1

𝑖=1 are pass-by-
reference parameters, which are marked with ref, while the pass-by-value parameters 𝑉
are equated to their initial values through the nochange function, as their updated values
are not visible in the method’s callers. Note that post-state Φpo captures updates that may

1 If there is no ambiguity, we can use 𝑣∗ instead of {𝑣∗}.
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[INF−METH−CALL]
𝑡0 mn (ref (𝑡𝑖 𝑣𝑖 )𝑚−1

𝑖=1 , (𝑡 𝑗 𝑣 𝑗 )𝑛𝑗=𝑚 ) Φ𝑝𝑟 Φ𝑝𝑜 {𝑐} ∈ Prog
𝜌=[𝑣′

𝑘
/𝑣𝑘 ]𝑛𝑘=1 Φ′

𝑝𝑟 = 𝜌(Φ𝑝𝑟 ) 𝑊={𝑣1, . . . , 𝑣𝑚−1} 𝑉={𝑣𝑚, . . . , 𝑣𝑛 }
[𝑣∗ ] Δ ⊢Φ′

𝑝𝑟 { (𝜙2, Δ2, R2 ) Δ3=(Δ2 ∧ nochange(𝑉 ) ) ∗𝑊 Φ𝑝𝑜

[𝑣∗ ] ⊢ {Δ} mn(𝑣1, . . . , 𝑣𝑚−1, 𝑣𝑚, ...𝑣𝑛 ) {𝜙2, Δ3, R2}

[INF−METH−DEF]
[𝑣∗, 𝑣∗

𝑟𝑒𝑙
] ⊢ {Φ𝑝𝑟∧

∧(𝑢′=𝑢)∗} 𝑐 {𝜙2, Δ2, R2} [𝑣∗, 𝑣∗
𝑟𝑒𝑙

] Δ2 ⊢Φ𝑝𝑜{ (𝜙3, Δ3, R3 )
𝜌1 = infer_pre(R2∪R3 ) 𝜌2 = infer_post(R2∪R3 )
Φ𝑛

𝑝𝑟 = 𝜌1 (Φ𝑝𝑟∧𝜙2∧𝜙3 ) Φ𝑛
𝑝𝑜 = 𝜌2 (Φ𝑝𝑜∗Δ3 )

⊢ 𝑡0 mn ( (𝑡 𝑢)∗ ) infer [𝑣∗, 𝑣∗
𝑟𝑒𝑙

] Φ𝑝𝑟 Φ𝑝𝑜 {𝑐} { Φ𝑛
𝑝𝑟 Φ𝑛

𝑝𝑜

Fig. 1.9 Hoare Rules with Bi-Abduction

occur from pass-by-ref parameters W. These updates need to be appropriately linked to
caller’s pre-stage Δ2 via the compose-with-update operator ∗𝑊 . Note that inference is
allowed to occur during the entailment of the method’s precondition.

Lastly, we discuss the rule for handling each method declaration [INF−METH−DEF]. At
the program level, our inference rules will be applied to each set of mutually-recursive
methods in a bottom-up order in accordance with the call hierarchy. This allows us to
gather the entire set R of relational assumptions for each uninterpreted relation. For
inferring each shape-based relation, we make use of the algorithm presented in [53]
to derive a definition for it. Our algorithm uses derivation rules that are sound but is
currently incomplete since heuristics are deployed to make the approach practical. For
a pure relation, we infer the pre- and post-relations via the two steps described below.
Take note that, given the entire set R , we retrieve the set of definitions and obligations for
post-relations through functions defpo and oblpo respectively, while we use functions
defpr and oblpr for pre-relations. Pre-relations denote unknown relations that are used
in the pre-condition, while post-relation denote those unknown relations that are being
used in the post-conditions. We also used annotations @pr and @po to explicitly identify
the pre-relations and post-relations, respectively.

defpo (R) = {𝜋𝑘
𝑖
→𝑣𝑟𝑒𝑙𝑖 (𝑣∗𝑖 ) | (𝜋𝑘

𝑖
→𝑣𝑟𝑒𝑙𝑖@po(𝑣∗𝑖 )) ∈ R}

oblpo (R) = {𝑣𝑟𝑒𝑙𝑖 (𝑣∗𝑖 )→𝛼 𝑗 | (𝑣𝑟𝑒𝑙𝑖@po(𝑣∗𝑖 )→𝛼 𝑗 ) ∈ R}
defpr (R) = {𝜋𝑘

𝑖
→𝑣𝑟𝑒𝑙𝑖 (𝑣∗𝑖 ) | (𝜋𝑘

𝑖
→𝑣𝑟𝑒𝑙𝑖@pr(𝑣∗𝑖 )) ∈ R}

oblpr (R) = {𝑣𝑟𝑒𝑙𝑖 (𝑣∗𝑖 )→𝛼 𝑗 | (𝑣𝑟𝑒𝑙𝑖@pr(𝑣∗𝑖 )→𝛼 𝑗 ) ∈ R}

• In order to infer post-relations, the function infer_post applies a least fixed point
analysis over the sets defpo (R) and oblpo (R). For computing the least fixed point
in the two domains used in the current inference framework, namely the numerical
domain and the set/bag domain, we utilize FixCalc [79] and FixBag [77], respectively.

• For pre-relations, our goal is to infer the weakest preconditions via infer_pre. Hence,
for each pre-relation, we first calculate the conjunction of all its obligations from
oblpr (R) to obtain sufficient preconditions for base cases. To capture the precondition
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for a recursive call, we need to derive the recursive invariant which can be achieved
via a top-down fixed point analysis [80].
Through the functions infer_pre and infer_post, we can finally infer definitions of
uninterpreted relations for deriving the pre- and postconditions, Φ𝑛

𝑝𝑟 and Φ𝑛
𝑝𝑜, of

a method mn. Note that 𝑣∗
𝑟𝑒𝑙

denotes the set of uninterpreted relations that are to
be inferred, whereas 𝜌1 and 𝜌2 represent the substitutions obtained for pre- and
post-relations, respectively.

1.5 Termination and Non-Termination Reasoning

The problems of proving program termination and non-termination are orthogonal. While
termination can be encoded as a liveness property, non-termination is considered as a
safety property. In this section, we will introduce a unified component in the HIP system
for reasoning both termination and non-termination of imperative programs at the same
time. The component, whose structure was represented in [60], was implemented based
on two main techniques:

• A resource-based specification logic and an automated verification system for specifying
and verifying termination and non-termination properties of programs [58].

• A modular inference system for automatically inferring termination and non-termination
specification of the programs. The system employs an abductive inference technique
with second-order specification to derive a summary of terminating and non-terminating
behaviors for each method in the program [59].

1.5.1 A Verification System for Termination and Non-termination

We propose three primitive temporal predicates Term 𝑋 with the ranking function 𝑋 ,
Loop, and MayLoop to specify the program termination, definite non-termination, and
possibly non-termination, respectively. We then extend the core specification language of
HIP (cf. Section 1.2.2) to these temporal predicates and integrate their reasoning into HIP’s
forward verification system (cf. Section 1.2.3) to specify and verify program termination
and non-termination. As a result, we can utilize the rich specification language and the
available verification infrastructure for reasoning about terminating and non-terminating
behaviors of various programs.

To do that, we propose a logic with the unified predicate RC⟨𝑙, 𝑢⟩ denoting the lower
bound 𝑙 and the upper bound 𝑢 of available resource capacity for program execution,
given that 0 ≤ 𝑙 ≤ 𝑢. In this logic, each method requires an initial resource for its execution,
specified by a predicate RC⟨𝑙, 𝑢⟩ in its precondition, and the verification system then
statically monitors the consumption of this resource to guarantee that it is always sufficient
for the execution. To keep track of the consumed and remaining resources within the same
entailment checking of the existing verification system, we design an entailment checking
with frame for resource reasoning via the resource splitting operation ▶, which is similar
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to the heap separating conjunction in separation logic. In particular, the splitting resource
assertion RC⟨𝑙1, 𝑢1⟩ ▶ RC⟨𝑙2, 𝑢2⟩ holds for a resource indicated by RC⟨𝑙, 𝑢⟩ if and only if
that resource can be split into two resource fragments, on which RC⟨𝑙1, 𝑢1⟩ and RC⟨𝑙2, 𝑢2⟩
hold respectively. In this case, we say that the entailment RC⟨𝑙, 𝑢⟩ ⊢ RC⟨𝑙1, 𝑢1⟩ ▶ RC⟨𝑙2, 𝑢2⟩
is valid. Intuitively, this entailment encodes a resource consumption of RC⟨𝑙1, 𝑢1⟩ on
the original resource RC⟨𝑙, 𝑢⟩ with the remaining resource RC⟨𝑙2, 𝑢2⟩. The entailment
checking ensures that RC⟨𝑙, 𝑢⟩ is sufficient for RC⟨𝑙1, 𝑢1⟩ to be consumed. During program
verification, the resource entailment checking mainly happens at the method calls, so that
we can check if the current maximum resource of the caller satisfies the maximum resource
requirement needed by the callee. In addition, at the end of each method declaration, we
check if the lower bound of the remaining resource is equal 0 in order to ensure that the
minimum resource utilized is suitably verified for each method declaration.

Specifically for the termination and non-termination reasoning, we model the three
temporal predicates as follows:

Term 𝑋 ≜ RC⟨0, 𝜌(𝑋)⟩
Loop ≜ RC⟨∞,∞⟩

MayLoop ≜ RC⟨0,∞⟩

where 𝜌(𝑋) is an order-embedding of the ranking function 𝑋 into naturals. Intuitively, a
terminating method indicated by Term 𝑋 must have a finite upper bound of the resource
to execute and 0 lower bound. On the other hand, a definitely non-terminating method
indicated by Loop requires an infinite lower bound of the resource, so that it will ensure
infinite execution/consumption. Lastly, a possibly non-terminating method indicated by
MayLoop does not have any specific requirement, so that its required resource ranges
from 0 to ∞. The resource entailment checking rules of these specific predicates are:

MayLoop ⊢ MayLoop ▶ MayLoop
MayLoop ⊢ Loop ▶ MayLoop
MayLoop ⊢ Term 𝑋 ▶ MayLoop
Loop ⊢ MayLoop ▶ Loop

Loop ⊢ Loop ▶ MayLoop
Loop ⊢ Term 𝑋 ▶ Loop

𝑌 < 𝑋

Term 𝑋 ⊢ Term 𝑌 ▶ Term 𝑋

These rules follow the general resource entailment checking for monitoring the execution
length of the method. A program state with MayLoop or Loop accepts any other resource
requirement by their ∞ upper bound. However, the ∞ lower bound of Loop is only
consumed by the other Loop to become a MayLoop. A program state with Term 𝑋 only
accepts another program state with a finite resource requirement Term 𝑌 which is smaller
than 𝑋 . Here, the frame Term 𝑋 is an over-approximation of the actual remaining resource.
This over-approximation is safe since its upper bound is finite and does not exceed the
original resource requirement. The other entailments, such as Term 𝑋 ⊢ Loop ▶ _ and
Term 𝑋 ⊢ MayLoop ▶ _, are invalid since they indicates that the caller’s resource does
not meet the callee’s resource requirement. Finally, the termination and non-termination
reasoning follows the resource reasoning by requiring that Loop resource state, with a
non-zero lower bound, are never encountered at the end of each method declaration, since
that would indicate some unconsumed resource lower bounds by the body of a method
that had already been earlier declared as definitely non-terminating.
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1.5.2 A Termination and Non-termination Specification Inference

In the next step, we aim to automatically infer the termination specifications with Term 𝑋 ,
Loop, and MayLoop associated with their pre-conditions. The general idea is that given
a pre-condition (true initially), we attempt to prove if under this pre-condition, the
method terminates (by determining if the pre-condition is a base case or otherwise
synthesizing a valid ranking function) or does not terminate (by proving that the method
exit is unreachable). The details of this process is captured in [59] and will also introduce
and infer unknown predicates to capture the expected lower and upper resource bounds.
If resource bound inference fail, we apply an abductive inference on the failure of the
non-termination proof to derive a new pre-condition that focus on the non base case(s) in
the next step of the execution.

Using case analysis, we refine the currently considered pre-condition into two distinct
cases: the newly derived abductive pre-condition and its complement. We then repeat
the inference process with these two new pre-conditions. The refinement iteration stops
when we can determine the termination (Term 𝑋) or non-termination (Loop) status of
all pre-conditions, so that there is no new unknown pre-conditions derived or when the
number of iterations reaches a preset number, in which all unknown pre-conditions are
marked as MayLoop.

Note that we do not implement the termination and non-termination inference from
scratch but rather utilize the existing HIP verification and specification inference system.
We must of course extend our specification logic to support unknown temporal predicate;
in addition to the three existing known temporal predicates Term 𝑋 , Loop, and MayLoop
and then infer solutions for each new unknown predicate, in terms of the known predicates.

Then, we annotate the analyzed method with an unknown specification and use the same
termination and non-termination reasoning. Our specification inference step would again
collect a set of relational assumptions over the unknown predicates. These assumptions
can be subjected to a refinement iteration process to obtain possible solutions of the
unknown predicates. By not analysing the source programs directly but subjecting them
to a verification against specifications containing unknowns, our algorithm can also be
referred to as a second-order inference technique.

1.6 Implementation and Experiments

HIP/SLEEK is written in OCaml consisting of approximately 260 source files, with
approximately 232K lines of code. It is structured in a modular manner to facilitate the
addition of new features, allowing it to become a more fully featured software verifier.

HIP and SLEEK work together in tandem, with HIP generating proof obligations
on code that are to be proven by SLEEK. By default, HIP works on a C-like language
that allows for the definition of data structures, shape predicates involving these data
structures, and function pre- and post-conditions. In addition, it also has a variety of
extended language parsers that work on common languages like C and Java, which allow
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the specification of predicates and pre- and post-conditions inside specially annotated
comment blocks. This allows it to work on some real world programs.

SLEEK works with a syntax that closely mimics standard mathematical notation for
logic, with some notational simplifications for use as code (such as & for ∧). SLEEK’s
language also includes similar syntax to HIP for defining data structures and shape
predicates, which allows it to be used independently of HIP as an entailment prover that
can handle user-defined data structures and predicates.

Entailment in SLEEK proceeds by matching up heap nodes from the antecedent to
the consequent, following the rules described in Section 1.3. Once the consequent only
contains pure formulae, we use XPure𝑛 to soundly approximate any remaining heap
formula in the antecedent as a pure formula. SLEEK then uses a range of theorem provers
to discharge the now pure entailment. The theorem provers include Z3 [66], MONA [28],
Isabelle [72], the Coq proof assistant or the Omega Calculator constraint solver [81]. Z3
is used by default, with the other provers being enabled by the user as needed.

Note that as each theorem prover has different syntax for the input formulas, SLEEK
needs to transform formulae into the proper format before invoking it. For example, the
Omega Calculator does not support the 𝑚𝑎𝑥 function, e.g., the formula 𝑧 = 𝑚𝑎𝑥(𝑥, 𝑦),
directly. Thus, before using Omega Calculator to discharge 𝑧 = 𝑚𝑎𝑥(𝑥, 𝑦), SLEEK
transforms the formula into the equivalent one 𝑧 = 𝑦 ∧ 𝑦 > 𝑥 ∨ 𝑧 = 𝑥 ∧ 𝑥 ≥ 𝑦 which is
accepted by Omega Calculator

1.6.1 Proof Search Heuristic

In contrast to most entailment provers, SLEEK employs a relatively straightforward proof
search heuristic when attempting to prove an entailment. If it sees a data node on the left
hand side, and another on the right, with both having the same name, it will attempt to
match both nodes, and remove them from the next entailment step. For a pair of predicate
instances, we will attempt a match, followed by a fold if it does not succeed, followed by
an unfold if the fold fails.

For a data node on the left, and a view on the right, we attempt fo fold the data node
with other nodes on the left to try to obtain the same view that we have on the right. In the
reverse situation (i.e. view on the left, data on the right), we unfold the view and attempt
to match the new nodes.

If lemmas (Sec. 1.3) are involved, we expand the search to include the applicable
lemmas. These lemmas are applied where possible, and the proof search continues with
the entailments that were transformed with the lemmas.

1.6.2 Experiments

Table 1.1 shows the experimental results for a suite of test programs over a variety of data
structures. The tests were performed on an Intel® Core™ i7-960, 3.20 GHz. For each
example, we note the following information (in order):
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• The function being verified.
• The number of lines of code of the function. This includes the lines of code for all

functions that are being called by the function being verified.
• The number of lines of annotations needed, including shape definitions.
• The verification time, when Z3 and the Omega Calculator are used to discharge pure

obligations.
• The verification time, when MONA is used to discharge pure obligations.

We also note the additional properties verified beside each category. The verification
times are given in seconds, to 3 significant figures.

The average cost of annotation, i.e. the number of lines of annotations to the number
of lines of code, is 18

Table 1.1 Verification times (in seconds) for data structures with arithmetic and bag/set constraints
Program Lines of Lines of Verification Time Verification Time

code annotation Z3 + Omega MONA MONA
Linked List size/length bag/set
delete 11 5 0.712 1.03 1.90
reverse 11 5 0.726 1.08 2.40
Circular List size + cyclic structure bag/set + cyclic structure
delete (first) 11 5 0.568 0.723 2.53
count 24 10 0.611 0.714 2.52
Doubly-Linked List size + double links bag/set + double links
append 20 5 1.02 2.11 3.22
delete 19 5 1.28 3.45 29.69
Sorted List size + min + max + sortedness bag/set + sortedness
delete 18 5 0.911 20.8 3.41
insertion_sort 30 10 1.01 failed 2.58
selection_sort 39 13 0.691 5.24 2.11
bubble_sort 31 17 0.533 0.556 1.34
merge_sort 87 17 1.09 failed 12.1
quick_sort 63 17 2.82 failed 6.69
Binary Search Tree min + max + sortedness bag/set + sortedness
insert 21 5 1.31 25.0 5.20
delete 48 7 1.39 20.8 10.2
AVL Tree size + height bag/set + height

+ height-balanced + height-balanced
insert 118 20 31.2 failed failed
delete 129 20 10.92 11.2 31.3
Red-Black Tree size + height bag/set + height

+ height-balanced + height-balanced
insert 236 50 8.71 failed 106
delete 308 50 2.89 2.97 165

We give a brief summary of the properties captured in each category:

• For singly-linked lists (Linked List), circular lists, and doubly-linked lists, the
specifications capture the size of the lists (i.e. the total number of nodes). For circular
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and doubly-linked lists, the cyclic structure and the double links, respectively, are
captured as well.

• For sorted lists, the size of the list, the minimum element, and maximum elements
are tracked. The sortedness property is expressed using the minimum element. If the
specifications contain the bag or set of reachable values, the sortedness is expressed
directly over the bag or set, with no need to explicitly track the minimum value.

• Binary search trees require the tree elements to be sorted. As such, similar to sorted
lists, we capture this sortedness property by either tracking the minimum/maximum
values within the tree, or via the bag or set of reachable values.

• For AVL trees, we capture the total number of nodes in the tree (its size), and its height.
Additionally, we specify and invariant that ensures that the tree is height-balanced, i.e.
that its left and right subtrees are nearly balanced. Even when we have the bag or set of
reachable values, we continue to track the height of the tree, to maintain this invariant.

• For red-black trees, we track the size and the black height (i.e. the height when
considering only the black nodes). We also include an invariant that ensures that the
tree is height-balanced in its black height, meaning that each node’s left and right
subtree have the same black height.

By default, we utilise a combination of Z3 and the Omega Calculator to discharge
pure proof obligations, with each prover covering for the weaknesses of the other. The
effectiveness of this combination is seen in the speed at which the tests complete, with Z3
and the Omega Calculator verifying the examples faster than MONA, and sometimes an
order of magnitude faster.

However, this combination of Z3 and the Omega Calculator is limited in its ability to
handle sets and bags of values, and thus when specifications involve bags or sets, we turn
to MONA to discharge these proof obligations. MONA is, however, also limited in its
ability to handle complex formulae. When the formula becomes too complex, MONA is
unable to proceed with discharging the necessary pure proof obligations. This is noted
where MONA fails to verify the example.

HIP/SLEEK has also participated in 2 software verification competitions over the
years: the Software Verification Competition, or SV-COMP, and the Separation Logic
Competition, or SL-COMP. Here, we present the results from SV-COMP 2016, and
SL-COMP 2014.

Table 1.2 SV-COMP 2016 Results
Category Total Tests Correct Incorrect Time Taken (s) Max Score Score Obtained
Recursive 98 70 0 9700 151 111

In SV-COMP 2016, HIP participated in the Recursive category, which tests the ability
of software verifiers to do recursive analysis on programs 2. HIP’s performance in
SV-COMP 2016 is summarised in Table 1.2.

2 https://sv-comp.sosy-lab.org/2016/benchmarks.php
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Table 1.3 SL-COMP 2014 Results
Category Total Tests Correct Incorrect Time Taken (s)
sll(⊨) 110 110 0 4.99
sll(⇒) 292 292 0 14.13
FDB(⇒) 43 31 1 43.65
UDB(⊨) 61 61 0 30.84
UDB(⇒) 172 131 4 80.60

SLEEK also participated in SL-COMP 2014. The results are summarised in Table 1.3.
The individual categories are3:

• sll(⊨): satisfiability problems for symbolic heaps with list segment predicates,
• sll(⇒): entailment problems for symbolic heaps with list segment predicates,
• FDB(⇒): entailment problems for symbolic heaps with composed lists,
• UDB(⊨): satisfiability problems for symbolic heaps with inductive definitions,
• UDB(⇒): entailment problems for symbolic heaps with inductive definitions.

HIP/SLEEK is available as an open source at [1] or through its web interface at [2].

1.7 Related Work

1.7.1 Formalisms for Shape Analysis of Data Structures

Many formalisms have been proposed for analyzing the shape of data structures in
imperative programs. One well-known work is the Pointer Assertion Logic [65], by
Moeller and Schwartzbach, which is a highly expressive mechanism to describe invariants
of graph types [40]. The Pointer Assertion Logic Engine (PALE) uses Monadic Second-
Order Logic over Strings and Trees as the underlying logic and the tool MONA [35] as the
prover. PALE invariants are not designed to handle arithmetic, hence it is not possible to
encode height-balanced trees in PALE. Moreover, PALE is unsound in handling procedure
calls [65], whereas we would like to have a sound verifier.

Harwood et al. [34] describe a UTP theory for objects and sharing in languages like
Java or C++. Their work focuses on a denotational model meant to provide a semantical
foundation for refinement-based reasoning or Hoare-style axiomatic reasoning. Our work
focuses more on practical verification for heap-manipulating programs.

In an object-oriented setting, the Dafny language [63] uses dynamic frames in its
specifications. The term frame refers to a set of memory locations, and an expression
denoting a frame is dynamic in the sense that as the program executes, the set of locations
denoted by the frame can change. A dynamic frame is thus denoted by a set-valued
expression (in particular, a set of object references), and this set is idiomatically stored in
a field. Methods in Dafny use modifies and reads clauses, which frame the modifications

3 from https://github.com/sl-comp/SL-COMP14/tree/master/bench
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of methods and dependencies of functions. By comparison, separation logic provides a
reasoning logic that hides the explicit representation of dynamic frames.

For shape inference, Sagiv et al. [85] present a parameterized framework, called
TVLA, using 3-valued logic formulae and abstract interpretation. Based on the properties
expected of data structures, the users may either learn or supply a set of predicates to the
framework which are then used to analyse that certain shape invariants are maintained.

However, most of these techniques are focused on analysing shape invariants, and do
not attempt to track the size and bag properties of complex data structures. An exception
is the quantitative shape analysis [84] where a data flow analysis is proposed to compute
quantitative information for programs with destructive updates. By tracking unique
points-to reference and its height property, their algorithm is able to handle AVL-like
tree structures. Even then, the author acknowledges the lack of a general specification
mechanism for handling arbitrary shape/size properties.

1.7.2 Reasoning with Inductive Heap Predicates

In separation logic, the first automated procedure to handle inductive heap predicates was
proposed by Berdine et al. [4, 5]. It reasons about the recursive structure of an inductive
heap predicate by folding/unfolding the predicate against its definition. However, this work
is hardwired to work for only lseg and tree predicates. Furthermore, it only performs
predicate unfolding in the consequent of an entailment which may miss bindings on
free variables. Compared to [4, 5], our unfold/fold mechanism is general, automatic and
terminates for heap entailment checking.

Bi-abduction technique for compositional shape inferece was first introduced in [9],
and was shown surprising effective and scalable to real program codes, despite its abstract
domain being presently restricted to lseg predicate. Our specification inference process is
inspired by this work, with the new goal of increasing the expressiveness of specifications
that could be both inferrable and provable.

Besides [4, 5], to date, there are also various approaches that hard-wire inductive heap
predicates to model specific types of the linked list and the tree data structures, such as
the works of Piskac et al. [78], Bozga et al. [7], Perez et al. [74, 75], and Curry et al. [25].
These works provide specific syntax and semantics for predicates in advance so that they
can derive efficient techniques to handle these predicates when proving entailments. Since
the invented techniques are tied to certain types of pre-defined predicates, they might not
be automatically extended to reason about other inductive heap predicates.

A more general approach is to consider classes of inductive heap predicates satisfying
certain syntactic or semantic restrictions, such as predicates with a bounded tree width
property by Iosif et al. [37, 38] or predicates describing variants of the linked list data
structure by Enea et al. [29]. These authors propose to prove entailments by translating
separation logic entailments into equivalent formulas in theories of automata or graphs.
Thereby, they can employ developed proof techniques in automata and graph theories to
prove the translated formulas, and conclude about the validity of the original separation
logic entailments. Nevertheless, inductive heap predicates in this approach might not be
able to represent sophisticated properties of data structures such as arithmetic constraints
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about their size or elements’ content. These constraints are not directly supported by the
considered external theories of graphs and automata.

To resolve the above expressiveness limitation, in this work, we consider more
general classes of user-defined inductive heap predicates, i.e. predicates which can be
arbitrarily defined by users of verification and analysis systems and propose to prove
entailments by using sequent-based proof systems with the folding/unfolding and predicate
matching/removing mechanisms. Similar approaches are also utilized by Qiu et al. [82, 73],
and Enea et al. [30]. However, there is a limitation in all of these works and ours: the
proof derivation to unfold and match predicates can be infinite. Therefore, we sometimes
require users to provide supplementing lemmas assisting the proof system to compose,
decompose or reorganize inductive heap predicates without the need of unfolding.

In recent works, Brotherston et al. [8], Chu et al. [16], and Ta et al. [88, 90] propose
to overcome the above limitation through inductive inference systems. Particularly, the
infinite unfolding sequences of inductive heap predicates would be avoided by the detection
of proof cycles [8, 54] or the application of induction hypotheses [16, 88, 90]. Finally,
in [89], Ta et al. present a technique to automatically synthesize lemmas by combining
induction proof and constraint solving, to assist proving entailments. Certainly, this work
can free the users from the labor task of manually inspecting and providing necessary
lemmas, which are needed in the proofs. Gillian, a reasoning platform that combines
separation-logic based verification, bi-abductive compositional analysis and symbolic
execution testing, tackles this problem by symbolically executing tests [32]. It explores all
possible paths by unrolling loops up to a bound, concluding with a bounded verification
guarantee in case of a successful verification or a counter-model, otherwise.

1.7.3 Beyond Shape: Size, Set, and Bag Properties

In another direction of research, size properties are mostly explored for declarative
languages [36, 93, 13] as the immutability property makes their data structures easier
to analyse statically. Size analysis is also extended to object-based programs [14] but is
restricted to tracking either size-immutable objects that can be aliased and size-mutable
objects that are unaliased, with no support for complex shapes.

The Applied Type System (ATS) [11] proposes combining programs with proofs. ATS
capture program invariants using dependent types and are extremely expressive; it can
express many program properties with the help of accompanying proofs. Using linear
logic, ATS may also precisely handle mutable data structures with sharing. However,
users must supply all expected properties, and precisely state where they are to be applied,
with ATS playing the role of a proof-checker. In comparison, we use a more limited class
of constraint for shape, size and bag analysis but support automated modular verification.

On the other hand, set-based analysis is proposed to verify data structure consistency
properties in the work of Kuncak et al. [42], where a decision procedure is given for a first
order theory that combines set and Presburger arithmetic. This result may be used to build
a specialised mixed constraint solver but it currently has high algorithmic complexity.
Lahiri and Qadeer [43] report an intra-procedural reachability analysis for well-founded
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linked lists using first-order axiomatization. Reachability analysis is related to set/bag
property that we capture but implemented by transitive closure at the predicate level.

1.7.4 Other Verification Systems in Non-Separation-Logic Settings

Program verifiers that are based on Hoare-style logic have been around longer than those
based on separation logic. We describe some major efforts in this direction.

ESC/Java [31] is a verification system developed at Compaq Systems Research Center,
that aims to detect more errors than traditional static checking tools, such as type checkers,
but is not designed to be a program verification system. The stated goals of ESC/Java
are scalability and usability. For that, it forgoes soundness for the potential benefits of
more automation and faster verification time. Hence, ESC/Java suffers from both false
negatives (programs that pass the check may still contain errors that ESC/Java is designed
to handle), and false positives (programs flagged as erroneous are in fact correct programs).
In contrast, our verifier is sound as it does not suffer from false negatives: if a program is
verified, it is guaranteed to meet its specifications for all possible program executions.

ESC/Java2 [18] is a continual effort of ESC/Java which adds support for current
versions of Java, and also verifies more JML [62] constructs. One significant addition is
the support for model fields and method calls within annotations [17]. Since ESC/Java2
continues to use Simplify [27] as its underlying theorem prover which does not support
transitive closure operations, it may have difficulties in verifying properties of heap-based
data structures that require reachability properties, such as collections of values stored in
container data structures.

Spec# [3] is a programming system developed at Microsoft Research to verify C#
programms by utilizing its underlying verifier Boogie [3]. Spec# adds constructs tailored
to program verification, such as pre- and post-conditions, frame conditions, non-null types,
model fields and object invariants. Spec# also supports runtime assertion checking and
object invariants. In order to verify invariants, Spec# employs an ownership scheme that
allows an object to own its representation. This ownership scheme requires programmers
to write special commands to enforce unpacking and packing objects’ invariants. In our
system, instead of using special fields in method contracts to indicate whether an invariant
should be enforced, users directly use predicates. Hence, there is no need for explicitly
packing and unpacking the objects in the method body. Consequently, users are shielded
from the details of the verification methodology, which are largely irrelevant, from a
user’s point of view.

Jahob [41] is a verification system that mainly focuses on reasoning techniques for data
structure verification that combines multiple theorem provers to reason about expressive
logical formulas. Jahob uses a subset of the Isabelle/HOL [71] language as its specification
language, and works on instantiatable data structures, as opposed to global data structures
used in its predecessor, Hob [44]. Like SPEC# , Jahob supports ghost variables and
specification assignments which places onus on programmers to help in the verification
process by providing suitable instantiations of these specification variables.

Inspired by separation logic with higher order list predicates, Predator is an graph-based
automated formal verification tool for verifying pointer manipulating C programs [76]. It
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supports the verification of programs with pointer arithmetic and it distinguishes between
safe and unsafe usage of invalid pointers. While Predator has a very mature treatment of
programs manipulating singly or doubly linked lists, it only tackles trees and skip-lists in
a restricted manner, that is for error detection and not for proving program safety.

EVE Proofs [92] is a verification system for Eiffel programs by translating and
conducting the verification with Boogie [3]. To infer the frame condition, this tool relies
on an automatic extraction of modifies clauses, which can be unsound. In contrast, our
approach does not have to infer frame conditions, courtesy to the frame rule of separation
logic [83]. Another restriction of EVE Proofs regards the methodology for invariants,
which has to take into account that objects can temporarily violate the invariant, but
also that an object can call other objects while being in an inconsistent state. As this is
not considered at the moment, the current implementation of invariants can introduce
unsoundness in the system.

For a comparison to the above non-separation-logic-based systems, our user-defined
predicates, which capture the properties to be analysed, can remove the need for model fields
and having object invariants tied to class/type declarations. Regarding ghost specification
variables, they are not required since we provide support for automatically instantiating
the predicates’ parameters. Furthermore, we utilize the unfold/fold mechanism to handle
recursive data structures. This obviates the need for specifying transitive closure relations
that are used by classical verifier, such as Jahob, when tracking recursive properties.
Lastly, as separation logic employs local reasoning via a frame rule, our approach does
not require a separate modifies clause to be prescribed.

1.8 Conclusion

In summary, we have presented our software verification system HIP/SLEEK, which
targets, but is not restricted to, C-like imperative programs. Assuming that each program is
specified by means of pre-/post-conditions, our system verifies whether the program meets
the specification, together with other memory safety and program liveness properties,
such as safe pointer dereference, no dangling pointer, no memory leaks, and program
termination. Even though not detailed in this chapter, HIP/SLEEK has also been enhanced
for concurrency reasoning [48, 45, 46], safe barrier usage [47], for ensuring communication
safety [19, 24], and also for reasoning about object-oriented programs [12]. Finally, to lift
the users’ burden of writing program specifications, HIP/SLEEK also makes available an
inference system to analyze the code and to automatically synthesize its specifications.
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