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Abstract. HIPrec is based on an automated verification framework to reason
with recursive integer programs. It uses a novel satisfiability solver that works
via inductive predicates. The key idea of HIPrec is its reduction approach to the
verification problem by utilizing an unfolding-based satisfiability that can pre-
cisely capture program semantics. This paper describes the verification approach
taken by HIPrec and provides instructions on how to install and use the tool.

1 Verification Approach

HIPrec verifies recursive programs by transforming each integer program into a set of
inductive predicates with precise program semantics; and reduces the error reachability
problem to satisfiability solving problem. There are a number of existing verification
tools targeted on verification of recursive programs [1–3]. This paper gives an informal
overview of our approach and key components that were required to handle the recur-
sive benchmarks from the verification competition. Interested readers can find more
details on the theory behind HIPrec in [4].

HIPrec builds upon the HIP system [5] and S2SAT satisfiability solver [4]. HIP
system was originally developed as a platform for automated verification of separa-
tion logic-based specification for heap-manipulating programs. It was also one of the
early pioneers for an expressive specification system where users are allowed to write
and reason with non-trivial inductive predicates. Such predicates can describe recursive
data structures, such as AVL-trees that are hard to verify. Over the years, this automated
verification platform has been gradually extended with a variety of new efficient and
expressive features, including specialization calculus [6] to prune infeasible disjuncts
while unfolding, error calculus [7] to find bugs, and second-order bi-abduction to sup-
port specification inference for pure property [8], and shape analysis [9].

1 int fibo(int n){
2 if(n<1) return 0;
3 else if(n==1) return 1;
4 else return fibo(n− 1)+fibo(n− 2);
5 }

6 int main(){
7 int(x=5);
8 int result=fibo(x);
9 if(result! =5) VERIFIER error();
10 return 0; }

Fig. 1. fibo 5 true-unreach-call.c of Recursive category.

S2SAT [4] is a semi-decision procedure for an expressive fragment of separation
logic over user-defined predicates with Presburger arithmetic properties. Our solver



combines model satisfaction and abstract interpretation. It iteratively refines disjunc-
tive separation logic formulas via a context-sensitive unfolding mechanism. In each
iteration, it searches for either one model (for satisfiable queries) or a proof of unsatisfi-
ability on all disjuncts (for unsatisfiable queries). The unsatisfiability solving is realized
by sound invariants from inductive predicates. These predicate invariants are inferred
automatically and are particularly helpful for ensuring that algorithm terminates.

For illustration, we show how to employ HIPrec to verify those programs in Re-
cursive category of the SV-COMP competition. In this category, a program is safe if
error locations are unreachable. To verify it, each method m is first transformed into
its equivalent recursive predicate m v. The list of arguments of this predicate includes
also a special res for output (if applicable) and another special parameter e to denote
status of a program path (e=0 for safety and e=1 for error). Each program path in m
corresponds to a disjunct in m v. Let us illustrate further how we use the proposed sat-
isfiability solver for verifying a fibonacci-like recursive program in Fig. 1. The methods
fibo and main are transformed into predicates fibo v and main v, as follows.

pred fibo v(n,res,e) ≡ emp∧n<1∧res=0∧e=0 ∨ emp∧n<=1∧res=1∧e=0
∨ fibo v(n−1,r1,e1)∗fibo v(n−2,r2,e2)∧e1=0∧e2=0∧res=r1+r2∧e=0;
pred main v(res,e) ≡ fibo v(x,result,e1)∧x=5∧e1=0∧result6=5∧e=1
∨ fibo v(x,result,e1)∧x=5∧e1=0∧result=5∧res=0∧e=0

We note that the first disjunct of main v predicate encodes the errors that are denoted by
the presence of e=1. Safety of the program is reduced to solving the following query:
main v( ,e)∧e=1. If S2SAT decides this query as unsat, then the error is unreachable.
If S2SAT decides this query as sat, then the program is unsafe since the error is reach-
able. In the latter case, S2SAT returns counter-example from the satisfiable disjunct.
From this counter-example, HIPrec symbolically traverses the input program to gener-
ate a witness. Interested readers may visit our HIPrec website to learn more about our
approach for verifying safety of recursive programs.

2 Software Architecture

The system firstly transforms the C programs into a core language with the help of
CIL [10], before executing it symbolically via Hoare-style rules. Our symbolic execu-
tion engine generates a set of inductive predicates and verification conditions. Finally,
these conditions are then passed to S2SAT. To decide on pure logic formulas S2SAT
utilizes off-the-shelf provers, such as Z3 [11] and Omega [12]. For finding closed-form
approximation to recursive predicates, HIPrec employs an in-house developed disjunc-
tive fix-point analyser, called FIXCALC.

3 Strengths and Weaknesses of the Approach

The main strength of our tool is an expressive satisfiability solver, named S2SAT. This
can decide formulas over separation logic with (both heap and non-heap) inductive
predicates. It allows us to gradually evolve our verification system into larger fragment
of recursive programs. Our weakness is that HIPrec is presently limited to recursive
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programs without heap. Although our satisfiability solver supports separation logic for-
mulas, the translation engine presently works for only non-heap programs. This short-
coming is a source of inspiration for future works on our toolset.

4 Tool Setup and Configuration

HIPrec website: http://loris-7.ddns.comp.nus.edu.sg/˜project/hiprec.
Download and Setup.
1. Download hiprec.tar.gz file from the tool website above.
2. Uncompress hiprec.tar.gz. The uncompressed folder, called hiprec, contains HIPrec
and all auxiliary tools (provers, fixed point computation) to run HIPrec.
Run. Change current working directory to hiprec and run HIPrec as follows
./hiprec /path/to/c_program_to_analyse
HIPrec outputs a triple: Verification result:(ANSWER, witness:WITNESS, TIME(seconds)).
ANSWER is one of TRUE, FALSE, UNKNOWN. When the ANSWER is FALSE,
WITNESS captures a link for witness that shows how error is reachable.
Participation Statement. We participate in the Recusive sub-category.
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