
Poster: Testing Heap-Based Programs with Java StarFinder

Long H. Pham∗ Quang Loc Le† Quoc-Sang Phan‡ Jun Sun∗ Shengchao Qin†

∗ Singapore University of Technology and Design, SG † Teesside University, UK ‡ Fujitsu Labs. of America, US

ABSTRACT
We present Java StarFinder (JSF), a tool for automated test case
generation and error detection for Java programs having inputs in
the form of complex heap-manipulating data structures. The core of
JSF is a symbolic execution engine that uses separation logic with
existential quantifiers and inductively-defined predicates to precisely
represent the (unbounded) symbolic heap. The feasibility of a heap
configuration is checked by a satisfiability solver for separation logic.
At the end of each feasible path, a concrete model of the symbolic
heap (returned by the solver) is used to generate a test case, e.g., a
linked list or an AVL tree, that exercises that path.

We show the effectiveness of JSF by applying it on non-trivial
heap-manipulating programs and evaluated it against JBSE, the
state-of-the-art symbolic execution engine for heap-based programs.
Experimental results show that our tool significantly reduces the
number of invalid test inputs and improves the test coverage.

KEYWORDS
Symbolic execution, separation logic, test input generation

ACM Reference Format:
Long H. Pham∗ Quang Loc Le† Quoc-Sang Phan‡ Jun Sun∗

Shengchao Qin† . 2018. Poster: Testing Heap-Based Programs with Java
StarFinder. In ICSE ’18 Companion: 40th International Conference on Soft-
ware Engineering Companion, May 27-June 3, 2018, Gothenburg, Swe-
den. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3183440.
3194964

1 INTRODUCTION
Symbolic execution [8] is a popular automatic approach to test input
generation, error detection and security vulnerability discovery. In
essence, this approach takes program inputs as symbols, instead of
concrete values, and computes the effects of program statements as
expressions over those input symbols. This, however, is not straight-
forward when the program inputs are dynamically-allocated linked
data structures, such as lists and trees, and thus testing and bug
finding of programs with heap inputs remain a challenge.

We present Java StarFinder (JSF), a tool that aims to address the
aforementioned problem. JSF is a test case generation tool for heap-
based programs, i.e. programs with inputs in the form of complex
heap-based data structures. JSF takes Java bytecode programs as
inputs. It performs symbolic execution of the program, and generates
JUnit test cases that achieve high coverage. The generated test cases

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194964

are valid data structure instances, such as double linked lists or red
black trees, that satisfy the invariant predicates, often called repOK ,
of the corresponding data structures.

Related tools. The state-of-the-art approaches to handling data
structures in symbolic execution are based on lazy initialization [7],
which is a brute-force algorithm that considers all possible cases
of a reference variable. Lazy initialization and its variants, e.g. [4,
5], do not take into account the shape of the input data structures,
and thus generate too many invalid test cases. Recently, authors
in [3] introduced JBSE with preconditioned lazy initialization. In
particular, JBSE uses the so-called HEX logic as a specification
language to describe the input data structures, and prunes off the
invalid initialization when the specification is violated. However, we
found that the HEX logic is not expressive enough to describe data
structures. In this work, we present JSF, which addresses this gap
with separation logic. A more detailed comparison between JBSE
and JSF can be found in [11].

2 TOOL DESCRIPTION
JSF is a preconditioned symbolic execution engine that uses sep-
aration logic as the specification language to describe the input
data structures. JSF combines three new features. Firstly, to express
the execution of heap objects, JSF uses separation logic [6, 12]
combined with existential quantifiers and inductive definitions to
precisely represent the input data structures and the symbolic states
with unbounded heap. Secondly, JSF applies lazy initialization such
that uninitialized variables/fields are instantiated only when they
are accessed, i.e., assigned to another variable or heap accessed,
i.e., de-referenced. Especially, instead of brute-force enumeration of
all possible heap objects our initialization is context-sensitive; JSF
only enumerates those values that satisfy the preconditions. Lastly,
JSF exploits recent advances in satisfiability checking of separation
logic [9, 10], which enable generating a model for each feasible
symbolic heap configuration. These models are then used to gener-
ate test inputs. An in-depth discussion of technical details of JSF
can be found in a companion paper [11]. JSF is a freely available
open-source project: https://github.com/star-finder/jpf-star.

The architecture of JSF is depicted in Figure 1. It consists of
four components: jpf-core, jpf-star, starlib and S2SAT

where our current focuses are jpf-star and starlib.

jpf-core is the core of NASA’s Java PathFinder (JPF) model check-
ing platform [2]. In essence, it is a customized JVM that (con-
cretely) executes Java bytecode. Different from a standard
JVM, it allows defining non-deterministic choices during the
execution, e.g. in multi-threaded programs. When there are
non-deterministic choices, JPF will search all possible execu-
tions using depth-first search (by default) or other heuristics.

https://doi.org/10.1145/3183440.3194964
https://doi.org/10.1145/3183440.3194964
https://doi.org/10.1145/3183440.3194964
https://github.com/star-finder/jpf-star


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden L.H. Pham et al.

Bytecode
Executor

Symbolic
Heap

Choice 
Generator

Listener

jpf-core

S2SAT
Java StarFinder

Constraint
Handler

Test suite
Generator

starlib

jpf-star

Java 
Bytecode Precondition

Test inputs

Figure 1: Architecture of Java StarFinder

jpf-star is our JPF extension for “classical” symbolic execution. It
replaces the concrete execution semantics of jpf-core to
manipulate the symbolic heap configuration. For example,
when loading a reference-type variable x (by executing the
bytecode ALOAD), it first checks if x is pointing to a heap node,
or if it is defined by an inductive definition. In the latter case,
it needs to unfold the definition, and explores all possible
cases (non-deterministic choices).

starlib is a common library to handle separation logic constraint, in-
cluding parsing the precondition, unfolding the formula, and
so on. It is independent of jpf-star, and its dependence
on JPF is also minimal. So that it can be re-used in other
systems, e.g. concolic execution, or re-used outside JPF.

S2SAT is a satisfiability solver for separation logic [9, 10]. It is used
to check if a (symbolic) heap configuration is satisfiable. Un-
satisfiable configuration means the current path is not feasible.
At the end of a feasible path, the model of S2SAT is used to
generate test input, e.g. an AVL tree, that exercises that path.

3 RESULTS
To evaluate our tool, we compare it against JBSE, a state-of-the-art
symbolic execution engine for heap-based programs. We use the
same benchmarks that were used to evaluate JBSE. Due to space
limit, we only present the results for doubly linked list, AVL tree and
red black tree. A more throughout comparison can be found in [11].

For each generated test input, we check its validity by passing it as
arguments to the corresponding repOK method in the data structure.
If repOK method returns true, the test input is deemed valid. We
then use JaCoCo [1] to measure the branch coverage of test inputs
generated by the tools.

The experimental results are shown in Fig. 2. LOC means the
number of lines of code. Columns #Tests show the results in form
of the number of valid test inputs over the number of generated test
inputs. Columns Cov.(%) show the coverage of valid test inputs.
The results show that all test inputs generated by JSF are valid, and
they achieve much higher coverage than JBSE’s test inputs.

DS/Project LOC Method JSF JBSE
#Tests Cov.(%) #Tests Cov.(%)

Doubly Linked List 354

addFirst 1/1 100 2/4 100
addIndex 6/6 100 0/18 0
addLast 1/1 100 0/4 0

add 1/1 100 0/4 0
clear 2/2 100 0/8 0
clone 2/2 100 0/2665 0

contains 8/8 100 0/1744 0
getFirst 3/3 100 0/5 0
getLast 3/3 100 0/5 0

get 4/4 100 0/18 0
indexOf 8/8 100 0/1744 0

lastIndexOf 8/8 100 0/1744 0
inList 6/6 100 0/17 0

removeFirst 2/2 100 0/9 0
removeIndex 3/3 100 0/33 0
removeLast 2/2 100 0/9 0

remove 6/6 100 0/1776 0
set 4/4 100 0/80 0
size 1/1 100 0/1 0

toArray 3/3 100 0/385 0

AVL Tree 249

findMax 6/6 100 1/7 33.33
findMin 5/5 100 1/7 33.33

find 14/14 100 1/35 25
insert 23/23 100 18/76 100

isEmpty 4/4 100 2/2 100
makeEmpty 1/1 100 1/1 100
maxElement 6/6 100 7/14 100
minElement 8/8 100 6/15 100

printTree 2/2 100 5/18 100

Red Black Tree 515

containsKey 8/8 100 10/16 100
containsValue 25/25 100 2/2 16.67

firstKey 4/4 100 3/8 100
lastKey 4/4 100 3/8 100

get 8/8 100 10/16 100
put 142/142 100 11/26 83.67

remove 123/123 100 13/23 35.62

Figure 2: The experiment results with JSF and JBSE

4 CONCLUSION AND FUTURE WORK
We present JSF, a tool for test input generation of heap-based pro-
grams using symbolic execution and separation logic. The experi-
mental results show that our approach generates only valid test cases
and obtain high coverage for methods of nontrivial data structures.

For future work, we might investigate machine learning and/or
bi-abduction techniques to synthesize separation logic preconditions.

Acknowledgments. The first author is partially supported by the
Google Summer of Code 2017 program.

REFERENCES
[1] JaCoCo Java Code Coverage Library. http://www.eclemma.org/jacoco/.
[2] Java PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/.
[3] P. Braione, G. Denaro, and M. Pezzè. JBSE: A Symbolic Executor for Java

Programs with Complex Heap Inputs. FSE 2016, pages 1018–1022. ACM, 2016.
[4] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A K-bounded Symbolic Execution

for Checking Strong Heap Properties of Open Systems. ASE ’06, pages 157–166.
[5] B. Hillery, E. Mercer, N. Rungta, and S. Person. Exact Heap Summaries for

Symbolic Execution. VMCAI 2016, pages 206–225, 2016.
[6] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data

structures. POPL ’01, pages 14–26. ACM, 2001.
[7] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execution for

model checking and testing. TACAS’03, pages 553–568. Springer-Verlag, 2003.
[8] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–

394, July 1976.
[9] Q. L. Le, J. Sun, and W.-N. Chin. Satisfiability Modulo Heap-Based Programs. In

CAV, pages 382–404. Springer International Publishing, 2016.
[10] Q. L. Le, M. Tatsuta, J. Sun, and W. Chin. A Decidable Fragment in Separation

Logic with Inductive Predicates and Arithmetic. In CAV 2017, pages 495–517.
[11] L. H. Pham, Q. L. Le, Q. Phan, J. Sun, and S. Qin. Enhancing Symbolic Execution

of Heap-based Programs with Separation Logic for Test Input Generation. CoRR,
abs/1712.06025, 2017.

[12] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
LICS, pages 55–74, 2002.

http://www.eclemma.org/jacoco/
http://babelfish.arc.nasa.gov/trac/jpf/

	Abstract
	1 Introduction
	2 Tool Description
	3 Results
	4 Conclusion and Future work
	References

