
Automatic Data Structure Repair using Separation Logic

Guolong Zheng∗ Quang Loc Le† ThanhVu Nguyen∗ Quoc-Sang Phan‡

∗ University of Nebraska-Lincoln
{gzheng, tnguyen}@cse.unl.edu

† Teesside University
q.le@tees.ac.uk

‡ Fujitsu Labs. of America
sphan@us.fujitsu.com

ABSTRACT
Software systems are often shipped and deployed with both known and
unknown bugs. On-the-fly program repairs, which handle runtime errors
and allow programs to continue successfully, can help software reliability,
e.g., by dealing with inconsistent or corrupted data without interrupting
the running program.

We report on our work-in-progress that repairs data structure using sepa-
ration logic. Our technique, inspired by existing works on specification-
based repair, takes as input a specification written in a separation logic
formula and a concrete data structure that fails that specification, and per-
forms on-the-fly repair to make the data conforms with the specification.
The use of separation logic allows us to compactly and precisely rep-
resent desired properties of data structures and use existing analyses in
separation logic to detect and repair bugs in complex data structures.

We have developed a prototype, called STARFIX, to repair invalid Java
data structures violating given specifications in separation logic. Prelim-
inary results show that tool can efficiently detect and repair inconsistent
data structures including lists and trees.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: [General]; D.2.1 [Software Engineer-
ing]: [Requirements/Specifications]; D.2.4 [Software Engineering]: [Soft-
ware/Program Verification]; D.2.5 [Software Engineering]: [Testing and
Debugging]; F.3.1 [Logics and Meanings of Programs]: [Specifying
and Verifying and Reasoning about Programs]

Keywords
automatic repair; error handling and recovery; data structure; separation
logic

1. INTRODUCTION
Software systems are often shipped and deployed with (both known and
unknown) bugs [9]. Many automatic program repair approaches [16, 17,
22–24] focus on offline repairs, e.g., they analyze the program code, gen-
erate fixes, patch the program, and then recompile and run the patched
program. In contrast, on-the-fly repairs [7–9,25–27] repair a running pro-
gram, allowing it to recover from errors and continue to run. Although
offline repair, e.g., halt a failed program to repair, is ideal in many sit-
uations, the ability to handle and recover from runtime errors on-the-fly
can improve software reliability considerably, e.g., in situations involving
critical systems that cannot be interrupted or dealing with inconsistent/-
corrupted files [8].

Specification-based repair is a popular on-the-fly repair approach focus-
ing on data structures, such as lists or trees [8, 9, 25–27]. This approach
takes as inputs a specification (e.g., a repOK predicate [9] or a first or-
der logic formula) that encodes the required properties of data structures
and a program state that fails that specification, and then creates a new

program state to satisfy the specification. For example, given a predicate
that checks for valid linked lists, this approach can automatically fix bad
program states due to corrupted input lists (e.g., by changing some next
field, which originally points to an incorrect node, to point to a correct
node), thus allowing the program to continue its run correctly.

Our work is inspired by specification-based repair and also focuses on
dynamically-allocated data structures (e.g., those created via the new key-
word in Java or C and stored in the memory heap). However, instead
of using predicates or formulas in first-order logic, we represent desired
properties of data structures using heap predicates in separation logic
(SL) [11, 21]. SL, which extends classical logic, allows for compact and
precise representations of heap-based program semantics and reasoning
to be localized to small portions of memory. There are several bene-
fits of using SL specifications: (i) SL formulae are specifically designed
to describe memory shape properties, which can be difficult to express
using predicate or first-order logic formula, (ii) SL heap predicates nat-
urally and succinctly encode the recursive structures of commonly-used
and standard data structures (such as lists and trees), and (iii) we can
use existing SL analyses such as model checking [4] and predicate un-
rolling [3, 18, 20] to check for bugs and perform on-the-fly repairs.

We present a new technique to repair data structures violating SL speci-
fications. Given an inductive SL predicate and a concrete data structure
input, we first check that the data conforms to the given predicate by iter-
atively unfolding and matching the predicate with the concrete data struc-
tures. Checking allows us to both detect bugs (indicated by unmatched
results) and localizing faults (identifying unmatched parts of the data).
Next, we analyze unmatched results to generate a candidate fix, e.g., com-
puting a new value for an unmatched field, and recheck if the modified
data satisfies the SL predicate. If it does not, we backtrack and compute
a new fix. The algorithm can generate multiple valid fixes with respect to
the given SL specification.

We have developed a repair prototype1, called STARFIX, to repair in-
valid inputs violating given SL predicates. STARFIX is implemented in
Java and is designed to check for inconsistent Java data structures. More
specifically, STARFIX uses Java StarFinder [2], an extension of the Java
PathFinder platform [1] that supports SL assertions. Currently, STARFIX
can detect and repair corrupted data structures including lists and trees.

2. APPROACH AT A GLANCE
Given a specification in SL and a concrete data structure, STARFIX checks
whether the data satisfies the specification. If it is not the case, STARFIX
modifies the data to satisfy the specification. More specifically, STARFIX
uses an iterative algorithm that unfolds and matches heap predicates of
the specification to the concrete data to find inconsistencies and repairs.
STARFIX stops when it reaches a search limit (e.g., defined by the user)
or has explored all possible matching attempts.

1https://github.com/guolong-zheng/starfix

https://github.com/guolong-zheng/starfix

(a) (b) (c)

(d) (e) (f)

Figure 1: STARFIX repairs the invalid circular doubly-linked list shown in Figure 1a by iteratively generating the repair candidates shown in Figures 1b,
1c, and 1d. Figure 1d is a correct repair. Figures 1e and 1f are two other valid repairs generated by STARFIX.
Heap Predicates. We use SL heap predicates to represent data struc-
tures. For example, the following predicates dll and lst define circular
doubly-linked lists:

pred dll(head) ≡ (emp ∧ head=null)
∨ (∃p, n.head 7→Node(p, n)∗lst(head, p, head, n))

pred lst(h, prevh, cur, next) ≡ (emp ∧ prevh=cur=next=h)
∨ (∃n, next 7→Node(cur, n)∗lst(h, prevh, next, n))

Here, emp indicates that the heap is empty (e.g., the list is null) and
head 7→Node(p, n) indicates that head points to an allocated Node(p) ob-
ject. The existentially quantified variables p and n represent the previous
and next fields of a node object, respectively. The operator ∗ is the sepa-
rating conjunction in SL; intuitively A ∗ B holds when both A and B hold
in disjoint heap regions.

The given predicate lst represents a circular doubly-linked list, recur-
sively defined as a current node cur with its next field next pointing to
a sublist. In lst, h is the head of the list, and prevh is the previous field
of the head, pointing to the final node. Both h and prevh are free, i.e. un-
bounded, variables. In the base case, next is null and the list has only
one node. In the recursive case, next points to a node, whose previous
field points to the current node cur, and the next field n points to a sub-
list, recursively defined in the same way. The predicate dll is built on
top lst to include the case when the list is empty.

Example. We illustrate STARFIX using the example given in Figure 1,
adapted from [9]. Figure 1a shows a data structure that does not satisfy
dll, as illustrated by the dashed links: (i) the next field of N2 is N1 but
the previous field of N1 is not N2 and (2) similarly, the previous field of
N3 is N1 but the next field of N1 is not N3. Figure 1 shows that to repair
the data structure given in Figure 1a, STARFIX generates several repairs
attempts shown in Figures 1b and 1c and finally obtains the correct one in
Figure 1d. In the following, we use the conventional terminologies sym-
bolic heap models (or just symbolic heaps) for SL predicates and concrete
models for concrete data structure instances.

STARFIX uses an iterative, unrolling and matching algorithm to check
the concrete model given in Figure 1a for inconsistency with the given
symbolic heap represented dll. In the first iteration, STARFIX unfolds
dll(x) to obtain the symbolic heaps:

∆1 ≡ emp ∧ x=null

∆2 ≡ ∃p1, n1. x7→Node(p1, n1)∗lst(x, p1, x, n1)

STARFIX then matches these symbolic models with the concrete model
M0 ≡ {x7→N0} (for illustration purpose, we assume that x points to N0

in Figure 1a). For ∆1, the matching fails because N0 is not null, and we
do not continue with this model. For ∆2, the match succeeds because we
can find values fromM0 to concreterize ∆2, i.e., we can generate a new
concrete modelM1 ≡ {x7→N0; p1 7→N3;n1 7→N1}. We continue the
unfolding and matching process using ∆2 andM1.

In the second iteration, we unfold ∆2 and obtain the symbolic heaps:

∆3 ≡ ∃p1, n1. x7→Node(p1, n1)∗p1=x ∧ x=n1

∆4 ≡ ∃p1, n1, n2. x7→Node(p1, n1)∗n1 7→Node(x, n2)∗
lst(x, p1, n1, n2)

STARFIX prunes ∆3 due to failed match and matches ∆4 to obtain the
new concrete modelM2 ≡ {x 7→N0; p1 7→N3;n1 7→N1;n2 7→N2}.

Similarly, in the third iteration, we obtain a matched symbolic heap and
create a concrete model (we do not show the unmatched heap):

∆6 ≡ ∃p1, n1, n2, n3. x7→Node(p1, n1)∗n1 7→Node(x, n2)∗
n2 7→Node(n1, n3)∗lst(x, p1, n2, n3)

M3 ≡ {x 7→N0; p1 7→N3;n1 7→N1;n2 7→N2;n3 7→N1}.

Next, in the fourth iteration, we unfold ∆6 and obtain:

∆7 ≡ ∃p1, n1, n2, n3. x7→Node(p1, n1)∗n1 7→Node(x, n2)∗
n2 7→Node(n1, n3)∧p1=n2∧n3=x

∆8 ≡ ∃p1, n1, n2, n3, n4. x7→Node(p1, n1)∗n1 7→Node(x, n2)∗
n2 7→Node(n1, n3)∗n3 7→Node(n2, n4)∗lst(x, p1, n3, n4)

The model ∆7 does not match as p1=n2∧n3=x is unsatisfied underM3.
The model ∆8 also does not match becauseM3 requires n1 = n3 (un-
derlined and in blue color pairs inM3) and ∆8 requires n1 is not equal
to n3 through the separating conjunction ∗. Because the concrete model
does not match with any symbolic heaps, STARFIX stops the unrolling
process and concludes that the data structure given in Figure 1a does not
satisfy dll.

STARFIX now attempts to repair the concrete model given in Figure 1a.
We leverage information computed during the unrolling process to reason
that we can likely make the repair by modifying either n1 or n3. Each
modification leads to a distinct fix.

We illustrate the repair by modifying the value of n3. First, STARFIX
backtracks the unfolding process to the third iteration above where we
obtain ∆6 that creates n3. Next, STARFIX explores possible values for
n3, such as {null, N3, N0, N2}, respectively. STARFIX first modifies
the value of n3 from N1 to null as shown in Figure 1b. ∆7 and ∆8

are both unsatisfied under this new model, so STARFIX explores another
possibility by modifying the value of n3 from null to N3 as shown in 1c,
where we obtain a new model:

M′3 ≡ {x 7→N0; p1 7→N3;n1 7→N1;n2 7→N2;n3 7→N3}.

With the new concrete model, STARFIX unfolds ∆6 and obtains ∆7

and ∆8 as shown above. Although ∆7 is pruned as before, matching
n3 7→Node(n2, n4) in ∆8 returns a contradiction:M′3 requires n2 7→N2,
but the concrete model has n2 7→N1. Thus, STARFIX generates a fix by
changing the value of the previous field in N3 in the concrete heap to N2

as shown in Figure 1d.

Predicate defn Pred ::= pred Pi(v̄i)≡Φi; τ ::= Int | c
Data structure Node ::= data ci{τ1 fi1 ; ..; τj fij}
Symbolic heap Φ ::= ∆ | Φ1 ∨ Φ2 ∆ ::= ∃v̄. (κ∧π)
Spatial formula κ ::= emp | x7→c(v̄) | P(v̄) | κ1∗κ2

Pure formula π ::= true | α | ¬π1 | ∃v. π | π1∧π2 | π1∨π2

Arithmetic α ::= a1=a2 | a1≤a2
a ::=k | v | k×a | a1+a2 | −a

Figure 2: Grammar of separation logic formulas

With this fix, we can continue the unfolding process on ∆8 to obtain:

∆9 ≡ ∃p1, n1, n2, n3, n4. x7→Node(p1, n1)∗n1 7→Node(x, n2)∗
n2 7→Node(n1, n3)∗n3 7→Node(n2, n4)∧p1=n3∧x=n4

∆10 ≡

The symbolic model ∆9 matches with the generated concrete model shown
in Figure 1d. Moreover, we can no longer unfold ∆9 because it contains
no inductive predicate. This indicates that the repaired data structure sat-
isfies the specification, i.e., a valid circular doubly-linked list.

Note that STARFIX could generate multiple fixes. Other than the fix
shown in 1d, STARFIX also generates fixes as shown in Figures 1e and 1f,
both are a valid circular doubly linked list. The fix in Figure 1e modifies
next field ofN0 toN3 and prev field ofN3 toN0. The fix in Figure 1f
modifies next field of N1 to N3 and prev field of N3 to N1.

3. BACKGROUND
We briefly describe SL formulae and the Java StarFinder tool, in which
our STARFIX is built upon.

3.1 Separation logic
In the last two decades, separation logic formalism [11,21] has been suc-
cessfully applied to analyzing and verifying heap-manipulating programs.
This formalism can support the concise and precise abstraction of shapely
data structures via symbolic heaps. The syntax of symbolic heaps in this
work is presented in Figure 2. To support type-based heap semantics (like
Java), we define concrete heap models via a fixed finite collection Node
(using keyword data), a fixed finite collection Fields, a disjoint set Loc
of locations (heap addresses), a set of non-address values Val, such that
null∈Val and Val∩Loc=∅ (i.e., no pointer arithmetic). We assume a set
of integers Z and Z⊆Val. We use k to denote an integer constant.

In Figure 2, we use x̄ to denote a sequence of variables. A formula is a
disjunction of symbolic heaps. A symbolic heap is a universally quan-
tified conjunction of a spatial formula and a pure (non-heap) formula.
A spatial formula is a separating conjunction of empty predicates emp,
points-to predicates x 7→c(v̄) (where c ∈ Node and v̄ are variables cor-
responding to fields of c), occurrences of inductive predicates P(v̄). In
STARFIX, a predicate, like [15] (and in contrast to Facebook’s Infer [5]),
is defined by the user using symbolic heaps with keyword pred. A pure
formula is an arithmetical constraint.

3.2 StarLib
In [18, 19], Pham et al. introduced STARLIB, the main component for
SL functions in JAVA STARFINDER. This library provides JAVA API’s
for parsing SL formula, unfolding inductive predicate, dispatching sat-
isfiability, etc. We note that the satisfiability API in STARLIB actually
invokes the state-of-the-art SL solver presented [13, 15] to discharge the
satisfiability problems. In this work, we extend STARLIB with matching
function to instantiate existentially quantified variables.

STARFIX uses the popular Unfold−and−Match technique to deal with
inductive predicates (which represent unbounded data structures) in SL.

This technique has been used for entailment [6], symbolic execution [3,
18, 20], satisfiability [15], and frame inference [14]. Intuitively, given
a formula with inductive predicates, this technique helps to expose all
possible heap structures through unfolding and instantiate the quantified
heap-based variables through matching. For model checking problem,
this technique first helps instantiate heap structure of a formula and then
match this structure against a given concrete heap structure. To our best
knowledge, we are the first to apply Unfold−and−Match to the model
checking and repair problems.

4. AUTOMATIC DATA STRUCTURE REPAIR
Given a specification ∆ and a concrete data structure T, STARFIX checks
if T conforms with ∆. If not, STARFIX generates one or multiple modi-
fied versions of T that conform with ∆.

4.1 Bug detection
In essence, the specification ∆ describes the set Σ of valid symbolic heap
configurations. On the other hand, the data structure T is a concrete heap
configuration. T contains no bug if there exists σ ∈ Σ that can be con-
cretized to T. This is a model checking problem. Algorithm 1 describes

Algorithm 1: ModelChecking(∆,T)
stack← ∅
stack.push(∆)
while stack.empty() = false do

∆t ← stack.pop()
if match(∆t,T) = true then

return true

if match(∆t,T) = false then
continue

S ← unfold(∆t)
for ∆i ∈ S do

stack.push(∆i)

return false

how STARFIX performs a depth-first search for such a σ. Similar to SAT
solver, it iteratively builds a mapM, of which each entry is a pair 〈os, oc〉
of a symbolic heap object os and concrete heap object oc. The concretiza-
tion is the process of assigning the concrete objects, i.e. values, in T to
the symbolic objects in (a derivation of) ∆.

In the beginning, ∆ is pushed on the stack, andM maps the root states
of the symbolic and concrete heaps, for instance, M stores 〈head, N0〉
in our illustrative example. STARFIX then iteratively does the following
procedure. First, it takes out the current symbolic heap configuration ∆t

from the top of the stack. If ∆t can be concretized to T, the T conforms
to ∆, i.e. it contains no bug, and the search ends.

On the other hand, if it determines that ∆t cannot be concretized to T, it
continues the search for different paths (we use the continue instruction
as in Java or C/C++). If matching is not decidable at the current state as
∆t contains inductive predicates, these predicates need to be unfolded.

Since an inductive predicate is often a disjunction of several symbolic
heaps (e.g., one base case and several recursive cases), unfolding ∆t will
result in a set S, and each element of S is pushed on the stack for further
searching. Details about the subroutines are explained in the following.

4.1.1 match(∆t,T)
This function takes two inputs: the symbolic heap ∆t and the concrete
heap T, and it has three possible outputs:

• true: ∆t can be concretized to T usingM. This means ∆t does
not contain inductive predicates, and all heap variables are con-

tained inM. For example, ∆9 with assignmentM′3 in our illus-
trative example.

• false: ∆t cannot be concretized to T. This is caused by a conflict
inM. For example, the conflict of n3 and n1 in assignmentM3

in the illustrative example.

• unknown: neither true nor false. There is no conflict in the par-
tial mapM, but there are variables of ∆t which are not inM as
they are defined by inductive predicates. These variables also get
concretized, as variable p1 and n1 in ∆2 in the illustrative example.

In the beginning, M contains only the root states of the symbolic and
concrete heaps. match then updatesM by comparing the shapes of the
symbolic and concrete heaps.

4.1.2 unfold(∆t)
This function is part of the STARLIB library [19]. Its input is a formula
∆t, which contains a variable x (or a set of variables) being defined by
an inductive predicate. Therefore, it is necessary to unfold the predicate
to capture the resources accessed by x, a.k.a. the footprints of x. The un-
folding procedure includes the following two sub-procedures: (i) replace
one occurrence of inductive predicates by its definition ; (ii) rename all
existentially quantified variables to avoid clashing. The result of this pro-
cedure is a new formula with x typically being defined by a point-to pred-
icate, while the newly renamed variables may still be defined by inductive
predicates. As the predicate is often defined by a disjunction of several
symbolic heaps, the output of the function is a set S of new formulas.

4.2 Automatic repair
When STARFIX determines that T does not conform with ∆, it will gen-
erate one or multiple modified versions of T that conforms with ∆. This
procedure is defined in Algorithm 2. This algorithm shares many com-
mon subroutines with Algorithm 1, the main difference is that match
will never return true, and when match returns false, STARFIX will
attempt to generate a fix (or fixes), and then continues its search.

Algorithm 2: Repair(∆,T)
stack← ∅
Γ← ∅
stack.push(∆)
while stack.empty() = false do

∆t ← stack.pop()
if match(∆t,T) = false then

γ ← generateFix(∆t,T)
Γ← Γ ∪ {γ}

S ← unfold(∆t)
for ∆i ∈ S do

stack.push(∆i)

return Γ

All functions in Algo. 2 have already been explained in the previous sec-
tion. We now explain how generateFix mutates T to generate fixes that
conform with ∆. When match(∆t,T) returns false, there are typically
two types of conflict inM.

• ∃ o1s, o2s, oc.〈o1s, oc〉, 〈o2s, oc〉 ∈ M∧ o1s 6= o2s

• ∃ os, o1c , o2c .〈os, o1c〉 ∈ M but os should map to o2c in the concrete
heap. For example, the reason explained to make the fix in 1d.

The first type of conflict only occurs when o1s and o2s are existentially
quantified variables. For example, the conflict of n3 and n1 in assignment

M3 in the illustrative example. STARFIX can generate two possible fixes
by modifying either o1s or o2s. In order to do so, it needs to backtrack to the
state where o1s (or o2s) is instantiated and generates a new corresponding
concrete heap object o1c for o1s. To generate o1c , STARFIX considers the
following options: (i) null, (ii) initialized objects in the concrete heap,
and (iii) a new node.

For the second type of conflict, STARFIX generates only one possible fix
by modifying oc in the concrete heap in a way that it can be concretized
form os. We perform the similar search on possible values for oc in a
similar way.

After fixing, there may be the cases that all symbolic objects are in the
mapM, while some concrete objects are not inM. In these cases, those
concrete objects will be deleted, as they are not bounded by the specifi-
cation. The fixes are still valid.

5. PRELIMINARY RESULTS
STARFIX is implemented in Java and works with Java bytecode pro-
grams. We use Java reflection to collect concrete heaps from running
program and STARLIB to parse and unfold SL formulae. Currently, we
implement a simple model checker to check the concrete heap with re-
spect to the specification as described in Algorithm 1. In future work,
we would extend the solver, e.g. [15], to obtain a more powerful model
checker to support more expressive properties involving general inductive
definitions, pointer-based (dis)equalities and arithmetic.

To evaluate STARFIX, we manually create corrupted data structures by
injecting errors into a correct data structure. For example, we randomly
pick nodes in a list and change their next or prev fields to point to null

or some random nodes in the list.

In addition to lists (e.g., the doubly-linked list shown in Section 2), STARFIX
can repair tree data structures, e.g., a binary tree defined by the predicate:

pred tree(root) ≡ (emp ∧ root=null)
∨ (∃l, r.root 7→Node2(l, r)∗tree(l)∗tree(r))

We can then use the predicate tree to repairs tree data structures. For
example, Figure 3a shows a corrupted tree that has both the right field of
b and left field of e pointing to g, violating the separating conjunction
in tree. When given this tree, STARFIX detects the inconsistency (at
iteration 20) and generates two fixes (at iteration 89): changing the right
field of b to null) (3b) and changing the left field of e to null 3c. Both
fixes are valid with respect to the tree specification.

6. RELATED WORK
STARFIX is inspired by the line of research on specification-based repair
for data structures. In this line of work, Elkarablieh et al. [9] use repOK

predicate functions to check for data structure integrity and mutates in-
valid data structures to pass these predicates. In addition to repOK, Zaeem
et al. [25–27] support pre/post-conditions using relational first-order logic
formulae in the Alloy’s language [12] and use SAT solving to generate re-
pairs. Demsky and Rinard [8] also use specifications written in Alloy’s
language and perform repairs by translating constraints into disjunctive
normal form and solving using an ad hoc search.

Several works explore strategies to improve efficiency and effectiveness
of data structure repairs using repOK and Alloy specifications, includ-
ing using execution trace history and unsat core [25] and abstracting and
memorizing repairs to apply to similar repairs [27]. Demsky et. al [7]
integrates the Daikon dynamic invariant generation [10] to infer desired
specifications for data structures (instead of requiring users to manually
provide such specifications). We are exploring these ideas to adapt and
extend them to STARFIX.

(a) (b) (c)

Figure 3: STARFIX fixes the invalid tree shown in Figure 3a by generating two repairs shown in Figures 3b and 3c.
The work in [4] presents a model checking technique for general SL
inductive predicates to support runtime verification. Given a concrete
model and a specification, the checker relies on a fixed point calculator
to compute for the specification a finite set of base pairs each of which is
a sub-model of the concrete model. In contrast to [4], STARFIX is based
on Unfold−and−Match and focuses on repair, instead of just checking,
programs. When the model checker returns false , STARFIX generates
fixes to avoid interrupting the running programs.

7. CONCLUSIONS AND FUTURE WORK
We present our work-in-progress on data structure repair using separa-
tion logic. By using separation logic, we can compactly and precisely
capture desired properties of data structures and use existing techniques
in separation logic to detect and repair complex data structures.

Currently, our prototype STARFIX can fix inductive Java data structures
such as trees and lists. We are pursuing four areas to improve the work.
First, we would extend an SL satisfiability solver, like [15], to support
a more expressive fragment with general inductive definitions and arith-
metic. Secondly, we are evaluating ranking techniques to prioritize fixes
generated by STARFIX, e.g., preferring repairs that preserve the origi-
nal data as much as possible. Thirdly, we are exploring optimizations,
e.g., repair abstraction and history-aware strategy [25, 27], to improve
STARFIX’s performance. Lastly, we are interested in using dynamic in-
ference to automatically generate required separation logic specifications
from good program states, as has been proposed in [7].

Acknowledgements. This work is partially supported by the Google
Summer of Code 2018 program.

8. REFERENCES
[1] Java PathFinder.

http://babelfish.arc.nasa.gov/trac/jpf/.
[2] Java StarFinder.

https://github.com/star-finder/jpf-star.
[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution

with Separation Logic. In APLAS, pages 52–68, 2005.
[4] J. Brotherston, N. Gorogiannis, M. Kanovich, and R. Rowe. Model

Checking for Symbolic-heap Separation Logic with Inductive
Predicates. In POPL, pages 84–96. ACM, 2016.

[5] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. O’Hearn, I. Papakonstantinou, J. Purbrick, and
D. Rodriguez. Moving Fast with Software Verification. In NASA
Formal Methods, pages 3–11, Cham, 2015.

[6] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated
Verification of Shape, Size and Bag Properties via User-defined
Predicates in Separation Logic. Sci. Comput. Program.,
77(9):1006–1036, Aug. 2012.

[7] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins,
and M. Rinard. Inference and enforcement of data structure
consistency specifications. In ISSTA, pages 233–244. ACM, 2006.

[8] B. Demsky and M. Rinard. Automatic detection and repair of
errors in data structures. In OOPSLA, volume 38, pages 78–95.
ACM, 2003.

[9] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid.
Assertion-based Repair of Complex Data Structures. In ASE, pages
64–73, New York, NY, USA, 2007. ACM.

[10] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao. The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming,
pages 35–45, 2007.

[11] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In POPL, pages 14–26, New York, NY,
USA, 2001. ACM.

[12] D. Jackson. Alloy: a lightweight object modelling notation.
TOSEM, 11(2):256–290, 2002.

[13] Q. L. Le, J. Sun, and W.-N. Chin. Satisfiability Modulo
Heap-Based Programs, pages 382–404. Cham, 2016.

[14] Q. L. Le, J. Sun, and S. Qin. Frame Inference for Inductive
Entailment Proofs in Separation Logic. In TACAS, pages 41–60,
Cham, 2018. Springer International Publishing.

[15] Q. L. Le, M. Tatsuta, J. Sun, and W.-N. Chin. A Decidable
Fragment in Separation Logic with Inductive Predicates and
Arithmetic. In CAV, pages 495–517, 2017.

[16] X. D. Le, Q. L. Le, D. Lo, and C. Le Goues. Enhancing automated
program repair with deductive verification. In ICSME, Raleigh,
NC, USA, October 2-7, 2016, pages 428–432, 2016.

[17] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In ICSE,
pages 691–701. ACM, 2016.

[18] L. H. Pham, Q. L. Le, Q.-S. Phan, J. Sun, and S. Qin. Enhancing
Symbolic Execution of Heap-based Programs with Separation
Logic for Test Input Generation. CoRR, abs/1712.06025, 2017.

[19] L. H. Pham, Q. L. Le, Q.-S. Phan, J. Sun, and S. Qin. Testing
Heap-based Programs with Java StarFinder. In ICSE, pages
268–269, New York, NY, USA, 2018. ACM.

[20] X. Qiu, P. Garg, A. Ştefănescu, and P. Madhusudan. Natural Proofs
for Structure, Data, and Separation. In PLDI, pages 231–242, New
York, NY, USA, 2013. ACM.

[21] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS, pages 55–74, 2002.

[22] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. ELIXIR:
Effective Object Oriented Program Repair. In ASE, pages 648–659.
IEEE, 2017.

[23] R. van Tonder and C. L. Goues. Static Automated Program Repair
for Heap Properties. In ICSE, pages 151–162. ACM, 2018.

[24] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
Finding Patches Using Genetic Programming. In ICSE, pages
364–367. IEEE, 2009.

[25] R. N. Zaeem, D. Gopinath, S. Khurshid, and K. S. McKinley.
History-aware data structure repair using SAT. In TACAS, pages
2–17. Springer, 2012.

[26] R. N. Zaeem and S. Khurshid. Contract-based data structure repair
using Alloy. In ECOOP, pages 577–598. Springer, 2010.

[27] R. N. Zaeem, M. Z. Malik, and S. Khurshid. Repair abstractions
for more efficient data structure repair. In Runtime Verification,
pages 235–250. Springer, 2013.

http://babelfish.arc.nasa.gov/trac/jpf/
https://github.com/star-finder/jpf-star

	Introduction
	Approach At A Glance
	Background
	Separation logic
	StarLib

	Automatic data structure repair
	Bug detection
	match(t,T)
	unfold(t)

	Automatic repair

	Preliminary Results
	Related work
	Conclusions and Future work
	References

