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Abstract. In this work, we experiment an idealistic approach for smart
contract correctness verification and enforcement, based on the assump-
tion that developers are either desired or required to provide a correctness
specification due to the importance of smart contracts and the fact that
they are immutable after deployment. We design a static verification
system with a specification language which supports fully compositional
verification (with the help of function specifications, contract invariants,
loop invariants and call invariants). Our approach has been implemented
in a tool named iContract which automatically proves the correctness
of a smart contract statically or checks the unverified part of the specifica-
tion during runtime. Using iContract, we have verified 10 high-profile
smart contracts against manually developed detailed specifications, many
of which are beyond the capacity of existing verifiers. Specially, we have
uncovered two ERC20 violations in the BNB and QNT contracts.

1 Introduction

“After this decade, programming could be regarded as a public, mathematics-
based activity of restructuring specifications into programs.”

(Edsger W. Dijkstra, 1969)

And it didn’t happen. Worse yet, the idea of having a formal specification ei-
ther before or alongside with a program has become unimaginable for ordinary
programmers nowadays.

We however may not have the luxury NOT to have a correctness specification
when it comes to smart contracts. Smart contracts are programs that run on top
of blockchain. They are often used to implement financial applications and in-
creasingly other critical applications. A bug in a smart contract thus could result
in a massive loss of valuable digital assets, which has been demonstrated time
and time again [8,23]. More importantly, due to the immutability of blockchain
(which is one of its fundamental properties), a smart contract cannot be patched
once it is deployed. In other words, once deployed, a bug in the smart contract
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would make it forever vulnerable. We thus must make sure a smart contract is
correct before it is deployed.

Existing approaches on tackling the correctness of smart contracts can be
roughly categorized into two groups, i.e., those approaches which target com-
mon vulnerabilities and those which support (manually specified) full correctness
specification. The former includes an extensive list of approaches and tools on
static analysis (such as Mythril [19], Oyente [17] and Securify [29]), fuzzing (such
as sFuzz [21], Echidna [13], and ConFuzzius [28]), as well as runtime monitoring
(such as sGuard [20], Solythesis [16], and Elysium [12]). While the approaches
are different, what is common across these approaches is that they all focus on
a collection of generic bugs (such as reentrancy, overflow or underflow, frontrun-
ning and frozen funds). While these approaches are undoubtedly useful, they are
incapable of identifying contract-specific bugs or showing their absence.

In this work, we propose iContract, a fully compositional verification
system for verifying and enforcing the correctness of smart contracts. iCon-
tract supports a rich specification language which allows developers to spec-
ify not only the traditional loop invariants and function specifications but also
contract invariants (for contract-level specification) and call invariants (for spec-
ification of external function calls). We remark that designing a specification
language that is relatively easy to use (which is essential in practice), expressive,
and makes verification easy is nontrivial. For instance, a smart contract often
interacts with other contracts via interfaces. Mishandling such interfaces (e.g.,
assuming that no contract states are modified by such interfaces or contracts
states can be modified arbitrarily) would hinder the verification of contracts. In
this work, we annotate external function calls with call invariants (so that we
can quantify the behavior of the external function call using a correctness logic
formula as well as an incorrectness logic formula). These call invariants can be
validated at the runtime and relied upon as assumptions when we verify the
calling function.

To evaluate the effectiveness and applicability of iContract in practice,
we apply iContract to verify 10 real-world high-profile contracts. For each
contract, a full specification of its correctness is first developed manually, with a
total of 1 PhD-month. iContract is then applied to verify each of the contracts.
The results show that iContract not only is scalable for verifying real-world
contracts but also uncovering contract-specific bugs. The results are encourag-
ing as it shows that developing a specification for critical but relatively simple
programs such as smart contracts is entirely feasible.

To sum up, our main contributions are as follows. First, we propose an ap-
proach for the correctness specification of smart contracts which facilitate com-
pletely compositional verification, including revert specification (i.e., specifica-
tions that capture explicit reverts) as well as call invariants for frame conditions.
Second, we develop an implementation of the compositional verification approach
for real-world Solidity smart contracts. Lastly, we conduct an evaluation using
10 real-world high-profile smart contracts (with a full specification of their cor-
rectness).
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2 Overview

2.1 Smart Contracts

The concept of smart contracts was first proposed by Nick Szabo in 1997 [27].
However, it only became a reality after the creation of Ethereum [31] in 2015.
An Ethereum smart contract implements a set of rules that aim to manage
digital assets in Ethereum accounts including externally owned accounts and
contract accounts. Despite a large variety of contract programming languages
(e.g., Solidity [5], Vyper [7], and Bamboo [1]), Solidity is the most dominant one
for implementing smart contracts. It is a Turing-complete, object-oriented, and
statically-typed programming language. A smart contract in Solidity is similar
to a class in object-oriented programming languages such as Java or C#. It con-
tains storage variables that stores persistent data and functions. While public
functions can be invoked from other accounts to modify storage variables, pri-
vate functions are internally invoked by other functions. An example of contract
written in Solidity is shown in Figure 1.

2.2 Vulnerability and Correctness

Same as traditional programs, smart contracts can have bugs. For instance, a
long list of common bugs have been identified [6], some of which have been
exploited and huge financial losses have occurred [8]. Making sure that a smart
contract does not repeat the same mistakes merely constitutes the first step
towards contract correctness.

An ideal approach for smart contract correctness verification must satisfy the
following requirements. First, it must support a rich notion of correctness. This
is because each contract is designed for a unique purpose and thus is expected
to satisfy a contract-specific specification. Existing approaches that are designed
to verify smart contracts against common general vulnerabilities are thus insuf-
ficient. Second, it must be fully compositional, i.e., given a contract, we should
be able to establish its correctness without relying on external contracts. Fur-
thermore, each functional unit, such as a function or even a loop, should have its
own specification so that any kind of global reasoning (even at the contract level)
could be avoided. In so doing, the verification system could achieve scalability.
Third, it must be fully automatic once the specification is provided. Lastly, it
must guarantee that the smart contract satisfies its specification, either through
static verification (ideally) or runtime verification (if necessary).

We obviously must pay some price to achieve the above-mentioned goals.
Our approach is thus based on two assumptions. First, we make the strong as-
sumption that developers are either requested or required (by stakeholders or
certification boards) to provide a correctness specification. While it was sadly
proven too strong an assumption for ordinary programs, it may be justifiable
for smart contracts due to the reasons mentioned above. Second, we make the
assumption that developers are willing to pay some reasonable amount of ad-
ditional fee (i.e., for runtime checking) in order to guarantee that the smart
contract satisfies the specification.
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2.3 An Illustrative Example

In the following, we illustrate how our goals are achieved by iContract through
an example. Figure 1 shows a token-issuing smart contract (written according
to the ERC20 standard [11]), which is a simplified version of a real-world smart
contract named HEALTH3. The contract includes global variables burnFee,
devFee, bFee, uniswapV 2, and balances. It supports (through a public function)
transfer of HEALTH tokens (hereafter h-tokens) from account from (a.k.a. sender)
to account to (a.k.a. receiver). Note that the sender is charged with some fee
for the transfer. Furthermore, in some cases, it burns (subtracts) an amount
(proportional to value) of the h-tokens hold by uniswapV 2, which is a service
that swaps h-tokens with BNB (i.e., a token which is often used for token ex-
change services) or vice versa. Particularly, first, at lines 8–12 if the receiver is
uniswapV 2, the contract swaps numTokensSell h-tokens for BNB (line 9). Sec-
ond, at lines 13–19, if the sender is not uniswapV 2, the contract burns some
h-tokens from uniswapV 2 (line 15). Lastly, at lines 20–26, the contract charges
development fee (line 25), burns token (line 26), and transfers the remaining
(line 24) to receiver.

To verify the contract, we start with developing a correctness specifica-
tion. For instance, lines 3–4, 10–11 and 18 constitute the correctness specifi-
cation of the function transfer. The specification relies on a set of pre-defined
functions, such as reverts if(p), modifies(x), ensures(p, q), call modifies(x) and
call inv(p, q). Intuitively, reverts if(p) says that the transaction reverts if p is
satisfied; modifies(x) (respectively call modifies(x)) says that the function (re-
spectively the external call) only modifies those variables in x; ensures(p, q)
is equivalent to the Hoare triple {p}s{q} where s is the function body; and
call inv(p, q) right after a function call is a call invariant, where p is a precon-
dition of the call and q is expected to be satisfied after the call. We remark
that modifies(x), call modifies(x) can be regarded as syntactic sugars of certain
special cases of ensures(p, q) and call inv(p, q).

In particular, the specification at line 4 demands that when value = 0, no
token should be burned. This is important as burning h-tokens reduces the to-
tal supply and, thus, increases the price of h-tokens. If h-tokens can be burned
unintentionally (e.g., when value = 0), attackers could potentially use the func-
tion to manipulate the market price. According to the call modifies(x) at line
11, only variables balances[this] and balances[uniswapV2 ] are modified. The
call invariants at lines 10–11 state that the function call at line 9 transfers
numTokensSell h-tokens from address this to address uniswapV 2. In particu-
lar, the balances[this] is reduced and balances[uniswapV2 ] is increased by the
same amount (i.e., numTokenSell). By default, all global variables could be
modified in the called function. Line 18 specifies that no variables are modified
by the external call.

Once the specification is given, iContract systematically verifies the con-
tract against the specification. It reports that the specification at line 4 is fal-
sified with a counterexample, i.e., if the sender is not uniswapV 2 and value is

3 deployed at BNB chain address 0x32b166e082993af6598a89397e82e123ca44e74e
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1 contract Health {
2 ...
3 /// reverts_if(_balances[from] < value)
4 /// ensures(to != uniswapV2 && value == 0 && _balances[from] >= value ,

_balances[_burnAddress] == old(_balances[_burnAddress ]))
5 function _transfer(address from , address to, uint value) private {
6 require(_balances[from] >= value);
7 // require(value > 0);
8 if (to == uniswapV2) {
9 UniswapRouter(uniswapV2).swapAndLiquify(numTokensSell);

10 /// call_inv(_balances[this] >= numTokensSell , _balances[this] == old(
_balances[this]) - numTokensSell && _balances[uniswapV2] == old(
_balances[uniswapV2 ]) + numTokensSell)

11 /// call_modifies(_balances[this], _balances[uniswapV2 ])
12 }
13 if (from != uniswapV2) {
14 uint burnValue = _balances[uniswapV2 ].mul(burnFee).div (1000);
15 _balances[uniswapV2] = _balances[uniswapV2 ].sub(burnValue);
16 _balances[_burnAddress] = _balances[_burnAddress ].add(burnValue);
17 IPancakePair(uniswapV2).sync();
18 /// call_modifies ()
19 }
20 uint devValue = value.mul(devFee).div (1000);
21 uint bValue = value.mul(bFee).div (1000);
22 uint newValue = value.sub(devValue).sub(bValue);
23 _balances[from] = _balances[from].sub(value);
24 _balances[to] = _balances[to].add(newValue);
25 _balances[address(this)] = _balances[address(this)].add(devValue);
26 _balances[_burnAddress] = _balances[_burnAddress ].add(bValue);
27 }
28
29 function transfer(address to, uint value) public returns(bool) {
30 _transfer(msg.sender , to, value);
31 return true;
32 }
33 }

Fig. 1. A sample contract

0, h-tokens are burned from uniswapV 2 on line 15. In other words, this con-
tract could be exploited by abusing the function transfer to burn h-tokens and
manipulate its price, i.e., an attacker first buys some h-tokens, repeatedly calls
transfer as described above, and sells his h-tokens at a higher price.

With the verification result, we can prevent the manipulation by adding one
statement require(value > 0 ) at line 7. Afterwards, iContract reports that the
specification is successfully verified. This is because if value = 0, the function is
reverted. Furthremore, if the user wish to verify the revert, he could annotate
another specification as reverts if(value=0) and invoke iContract to verify it.
Indeed, our system could verify the revert scenario successfully. Alternatively,
if the user chooses to conduct runtime verification, iContract automatically
translates the above-mentioned unverified specification into an assertion, which
is then validated every time the function is invoked. Note that in the latter case,
additional gas will be paid (for executing the assertion) for the correctness.
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3 Specification Language

3.1 High-level Overview

In the following, we present our specification language which is designed to sup-
port fully compositional verification of smart contracts at the function level. At
a high-level, our specification is composed of function specifications, loop invari-
ants, (external) call invariants and contract invariants.

Function specifications: Ideally, a user would be able to read the function spec-
ification and be fully aware of what the function does. Given a function f , a
function specification takes the form of multiple ensures(p, q) statements (at the
beginning of the function body), where p and q are predicates that we shall de-
fine shortly. Each ensures(p, q) statement represents a Hoare triple {p}f(x){q},
i.e., any reachable state at the end of the function (i.e., without reverting) from
a state satisfying p must satisfy q. In other words, q is an over-approximation of
the states reachable from p.

Loop invariants: It is well known that loops are difficult when they come to
program verification. While there are many existing approaches on synthesizing
loop invariants [10, 18], for now, we make the assumption that loop invariants
are provided as a part of the specification. A loop invariant takes the form
of multiple loop inv(q) statements at the beginning of the loop. Given a loop
while b do s, loop inv(q) at the beginning of the loop represents a Hoare triple
{b ∧ q}s{¬b ∧ q}.

Call invariants: Smart contracts often rely on other smart contracts through ex-
ternal function calls. To avoid global analysis, we assume that each external call
is associated with a specification in the form of multiple call inv(p, q) statements
and multiple achieves(p, q) statements. These help to ensure the function call
behaves expectedly, i.e., they serve as the minimal requirements on the external
contracts that are needed to guarantee the correctness of this contract. Given a
function call m(e), a statement call inv(p, q) forms a triple {p}m(e){q}. If p is
satisfied before the call, q is always satisfied after the execution of the function
call. Such statements can be used to prevent the well-known reentrancy vul-
nerability. A statement achieves(p, q) forms a specification in the incorrectness
logic [22], which intuitively means that if p is satisfied, it is possible to satisfy q
by making the external call.

Contract invariants: A contract invariant takes the form of multiple cinv(p)
statements at the top of the contract and is expected to be satisfied after ex-
ecuting the constructor and every public function in the contract. Although
technically it can be captured using function specifications (for both the con-
structor and every public function), it is typically used to capture contract-level
behaviors that are expected to hold always regardless of the functionalities pro-
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Table 1. Core features of Solidity

Func m m(v) = s
Stmt s sA | s; s | if e then s else s | while e do s | require(p) | assert(p) | skip
Atom sA v := e | v.m := e | v[e] := e
Expr e l | v | v.m | v[e] | e⊕ e | �e | m(e)

vided in the contract.

In addition, iContract supports a number of syntactic sugars which ease the
writing of specification. For instance, for each function, loop, or external function
call, we assume that all global variables may be modified unless a modifies(x)
statement is put in place (e.g., function definitions, function calls), which spec-
ifies that all except those variables in x remain unchanged. Additionally, when
variable x is a mapping, we allow users to write modifies(x[a]) where a is con-
stant value to state that only the value at location a of x is modified, while the
values at other locations are not.

In terms of specifying the expected behaviors of smart contracts, our spec-
ification language has mulitple advantages over existing approaches [14, 24, 26].
First, our specification language is designed to avoid global reasoning with the
help of call invariants. Second, the reverts if(p) statements allow us to easily
capture explicit reverts which are very common in smart contracts in the form
of require, revert() and so on. Note that this feature is missed from approaches
such as Solc-verify and as a result, those respective tools often generate false
alarms, i.e., reporting violation of postcondition on transactions that ought to be
reverted. Last, our specification is mostly based on well-known and well-founded
concepts which makes it easy to adopt.

3.2 Formalization

In the following, we provide the necessary formalization of our specification
language as well as smart contracts so that we can present precisely how our
approach works. Note that since all our verification effort (including static ver-
ification and runtime verification) takes place at the function-level, all we need
to formalize are smart contract functions and function-level specification.

Defining smart contracts: To ease the discussion hereafter, we model Solid-
ity’s core (function-level) features using the language presented in Table 1. A
function m includes parameters v, and a body statement s. A statement s is an
atomic statement sA, a conditional statement, a while loop, an assertion, revert
statement, and it also can be a sequence of statements (according to the defini-
tion shown in Table 1). An atomic statement sA is an assignment to a variable
(v := e), an assignment to member of a variable (v.m := e), or an assignment
to an array element (v[e] := e). An expression e is a literal l, a variable v, a
member access v.m, an index access v[e], a binary expression e ⊕ e, a unary
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expression � e, or a call v.m(e) of a local function (in the same contract) or an
external function (in a different contract). We use rev as a preserved variable for
revert condition: It is true if the contract has been reverted. Note that we can
simply transform other Solidity features into our core language features such as
the statement require(a) is equivalent to the statement i) assert(a ∧ ¬rev) in
verifying code against a function variant or ii) revert(¬a∧rev) in the verification
of reverts if(...).

To define the semantics of smart contracts, we define a set V ar contains all
the variables in the contract, a set Mem contains all the members of the data
structures in the contract, a set of mapping for arrays A, and data structures
(where A ∩ V ar = ∅), a set Loc contains all the memory locations, a set V al
contains all non-memory values (i.e., V al = Int ∪ Float ∪Bool ∪ Str, with Int,
Float, Bool, and Str are the sets containing integer, floating-point, boolean, and
string literals). We use two mapping functions S ∈ Stacks and H ∈ Heaps to
keep track of the execution environment. Consequently, a program state σc ∈
States is defined by a pair of stack and heap, as follows.

S ∈ Stacks =def V ar → (V al ∪ Loc)
H ∈ Heaps =def Loc→ (Type→ (Mem ∪ Int)→ (V al ∪ Loc))
σc ∈ States =def Stacks×Heaps

where the set Type contains all the data structure types defined in the contract
as well as the array type.

We define a standard small-step operational semantics of smart contracts
(based on the semantics of Solidity). A configuration C is a pair (s, σc) where
s is a program and σc is a program state (i.e., the valuation of both S and H).
The semantics is given by a binary relation,  , on configurations. Its intended
interpretation is that (s, σc)  (s′, σ′c) holds if the execution of the statement
in the configuration (s, σc) can result in the new program configuration (s′, σ′c).
An execution (of s) is a possibly infinite sequence of configurations (Ci)i≥0 with
C0 = (s, ) such that Ci  Ci+1 for all i ≥ 0. We define  ∗, the reflexive-
transitive closure of  , to capture finite executions (Ci)0≤i≤n. The details of
the small step semantics is present in Figure 2.

Defining the specification language: Our specification language is consti-
tuted of predicates defined using the syntax below.

Φ, p, q := Ψ | Φ ∨ Φ Ψ := a⊗ a | Ψ ∧ Ψ
a := e | a⊕ a | � a e := l | v | v[a] | v.m | old(v) | g(v)

In general, a predicate Φ is a disjunction with one or multiple conjunctions Ψ .
Each conjunct in Ψ is a relational predicate with ⊗ is a relational operator
(i.e., >, ≥, =, 6=, <, ≤). The left-hand side and right-hand side of a relational
predicate are arithmetic expressions. An arithmetic expression may have one
atomic expression or multiple of them connected by binary operators ⊕ (i.e.,
+, −, ∗, /) or unary operators � (i.e., ¬, −). An atomic expressions includes
a literal l, a variable v, a member access v.m, and an index access v[a]. The
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〈S,H〉 ` l ⇓ l Const
S(v) = l H(l) = (type(v),m, k)

〈S,H〉 ` v.m ⇓ k Access

〈S,H〉 ` v ⇓ S(v)
Var

S(v) = l S(e) = i H(l) = (type(v), i, k)

〈S,H〉 ` v[e] ⇓ k Select

〈S,H〉 ` e1 ⇓ k1 〈S,H〉 ` e2 ⇓ k2
〈S,H〉 ` e1 ⊕ e2 ⇓ k1 ⊕ k2

Binary
〈S,H〉 ` e ⇓ k1
〈S,H〉 ` �e ⇓ �k1

Unary

〈S,H〉, revert; s2  〈S0, H0〉, skip
Revert 〈S,H〉, skip; s2  〈S,H〉, s2

Skip

〈S,H〉, s1  〈S1, H1〉, s1′
〈S,H〉, s1; s2  〈S1, H1〉, s1′ ; s2

Seq
〈S,H〉, s1  〈S1, H1〉, abort

〈S,H〉, s1; s2  〈S1, H1〉, abort
Seq-Err

〈S,H〉 ` e ⇓ k S1 = S[v ← k]

〈S,H〉, v := e 〈S1, H〉, skip
Assign-1

〈S,H〉 ` v ⇓ k k 6∈ dom(H)

〈S,H〉, v.m := e 〈S,H〉, abort
Err1

〈S,H〉 ` v ⇓ k k ∈ dom(H) 〈S,H〉 ` e ⇓ k1
H1 = H[(k, type(v),m)← k1]

〈S,H〉, v.m := e 〈S,H1〉, skip
Assign-2

〈S,H〉 ` v ⇓ k 〈S,H〉 ` e1 ⇓ k1 〈S,H〉 ` e2 ⇓ k2
H1 = H[(k,Array, k1)← k2]

〈S,H〉, v[e1] := e2  〈S,H1〉, skip
Assign-3

〈S,H〉 ` v ⇓ k k 6∈ dom(H)

〈S,H〉, v[e1] := e2  〈S,H1〉, abort
Err2

〈S,H〉 ` e1 ⇓ k1 k1 6∈ size(v)

〈S,H〉, v[e1] := e2  〈S,H1〉, abort
Err3

〈S,H〉 ` b ⇓ True
〈S,H〉, if b then s else s′  〈S,H〉, s If-T

〈S,H〉 ` b ⇓ False
〈S,H〉, if b then s else s′  〈S,H〉, s′ If-F

〈S,H〉 ` b ⇓ True
〈S,H〉,while b do s 〈S,H〉, s; while b do s

Loop-T

〈S,H〉 ` b ⇓ False
〈S,H〉,while b do s 〈S,H〉, skip

Loop-F

v.m(p) = s 〈S,H〉 ` e ⇓ k S′ = S[p← k]

〈S,H〉 ` v.m(e) 〈S′, H〉, s Call

Fig. 2. Small-step operational semantics of the smart contract language, given by the
binary relation  over Stacks×Heaps

expression v.m accesses the value stored in the member m of a struct v, whereas
the expression v[a] accesses the value at key a of a mapping v. In addition, we
provide a function old(v) which returns the value of variable v at the beginning
of the function (for function specifications) or the loop (for loop invariant) or
before an external function call (for call invariants). Moreover, we support a
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S,H |= Φ1 ∨ Φ2 iff (S,H |= Φ1) ∨ (S,H |= Φ2)
S,H |= Ψ1 ∧ Ψ2 iff (S,H |= Ψ1) ∧ (S,H |= Ψ2)
S,H |= a1 ⊗ a2 iff (S,H |= a1 = k1) ∧ (S,H |= a2 = k2) ∧ (k1 ⊗ k2)
S,H |= a1 ⊕ a2 = k iff (S,H |= a1 = k1) ∧ (S,H |= a2 = k2) ∧ (k1 ⊕ k2 = k)
S,H |= �a = k iff (S,H |= a = k1) ∧ (�k1 = k)
S,H |= l = l iff true
S,H |= v = k iff S(v) = k
S,H |= v[a] = k iff S(v) ∈ dom(H) ∧ 0 ≥ S(a) < size(v) ∧H(S(v)) = (Array, S(a), k)
S,H |= v.m = k iff S(v) ∈ dom(H) ∧H(S(v)) = (type(v),m, k)
S,H |= old(v) = k iff S0, H0 |= v = k

S,H |= sum(v) = k iff type(v) = Array ∧ S(v) ∈ dom(H) ∧
∑size(v)

i=0 {v[i]} = k

Fig. 3. Specification formula semantic where dom(f) returns the domain of function
f , size(v) the range of index of the array v.

library of externally defined function g(v). One example is the sum function,
which, given a mapping v, computes the sum of all values stored in v.

The semantics is defined according to a satisfaction relation S,H |= Φ which
is defined in a common way, as shown in Figure 3. Next, we define the correct-
ness in our specification language. First, regarding contract invariants, given a
contract c associated with multiple cinv(p) statements, the contract is correct if
and only if each ensures(p, p) is satisfied by all the public functions including the
constructor. Second, regarding function specifications, given a function m(v) = s
associated with multiple ensures(p, q) and reverts if(p’) statements, the function
is correct iff for each ensures(p, q) statement, the following is satisfied.

∀σc, σ′c. σc |= p ∧ (s, σc) 
∗ (skip, σ′c) =⇒ σ′c |= q

Furthermore, for each reverts if(p’) statement, the following is satisfied

∀σc, σ′c. σc |= p′ ∧ (s, σc) 
∗ (require(b), σ′c) =⇒ σ′c |= ¬b

Third, regarding loop invariants, given a loop while b do s associated with an
loop inv(q) statement at the beginning, the following must be satisfied where L
is a function that filters states satisfying b.

∀σc, σ′c. σc |= q ∧ (s, L(σc, b)) 
∗ (skip, σ′c) =⇒ σ′c |= q

Fourth, for each achieves(p, q), the following must be satisfied.

∀σ′c.∃σc. σ′c |= q =⇒ σc |= p ∧ (s, σc) 
∗ (skip, σ′c)

Lastly, regarding call invariants, given an external function call m(e) associated
with multiple call inv(p, q), for any implementation s of m(e), the following must
be satisfied: ∀σc, σ′c. σc |= p ∧ (s, σc) ∗ (skip, σ′c) =⇒ σ′c |= q.
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4 Verification

We present our compositional verification algorithm by first defining an encod-
ing function post(σi, si) and illustrating how to utilize it to validate function
specification ensures(p, q) and revert specification reverts if(p). We remark that
we abuse the notation σi to represent a symbolic state where its syntax is sim-
ilar to our specification language. Furthermore, we provide encoding rules that
substitute loops and function calls with their specifications.

4.1 Function validation

We define an encoding function post(σi, si) that takes a pre-state σi and a state-
ment si as inputs, and procedure post-states σk as output. Given a function
m(v) = s which may contain loops as well as internal and external function calls,
our validations are defined as follows. A function specification ensures(p, q) with
implementation s is verified if post(p, s) returns σ such that σ ⇒ q. The execu-
tion post(p, s) indicates that the encoding process starts with pre-state p. After
processing the statement s, the validation formula σ ⇒ q means that if the func-
tion is not reverted then the encoding starts with p implies the post-condition
q. Similarly, a specification reverts if(p) is verified if post(p, s) returns the post-
state σ ∧ rev at exits. Note that the procedure of verifying ensures(p, p) utilizes
the encoding rule Revert-1. On the other hand, other Revert rules, such as
Revert-2 and Revert-3, are employed for the verification of reverts if(p).

4.2 Generating Proof Obligations

We define encoding function post(σi, si) using encoding rules, each of which is
of the following form.

premise0 ... premisei
σi, si  σk

This transition rule means given a pre-state σi, a statement si, it executes
premise0, ..., premisei to obtain the post-state σk. The encoding rules are
shown in Figure 4. Note that the encoding transforms the code into the pred-
icates supported by off-the-shelf SMT solver Z3. While most of the syntax
is self-explanatory, we use the notation v[a → l] to represent an array with
v[a→ l][a′] = v[a′] when a′ 6= a and v[a→ l][a] = l.

The rules are divided into three groups, i.e., rules for local operations, rules
for external function calls, and rules for revert. Rules for local operations include
Seq, Assign-1, Assign-2, Assign-3, If and Loop. They are similar to the
traditional Hoare rules. In the Assign-2 and Assign-3, we substitute v before
the assignment with x, and set the current v as the result of update value e[x/v]
to the value located at index m[x/v] or property m. In the Assign-2, for each
write operation to v[m], we compute sum(v) by adding the current sum u to the
difference between the new value e and the old value v[m], i.e, u′ = u+ e−v[m].
The Loop substitutes the loop with its invariant and exiting condition (i.e., ¬b).
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σ, s1  q1 q1, s2  σ2

σ, s1; s2  σ2
Seq

σ′ = ∃x. σ[x/v] ∧ v = e[x/v]

σ, v := e σ′ Assign-1

u′ = u+ e− v[m] σ′ = ∃x. σ[x/v] ∧ v = x[m[x/v]→ e[x/v]]

σ ∧ sum(v) = u, v[m] := e σ′ ∧ sum(v) = u′ Assign-2

σ ∧ rev, s σ ∧ rev Rev-Prop
σ′ = ∃x. σ[x/v] ∧ v = x[m→ e[x/v]]

σ, v.m := e σ′ Assign-3

σ ∧ b, s0  σ1 σ ∧ ¬b, s1  σ2

σ, if b then s0 else s1  σ1 ∨ σ2
If

σ ⇒ q

σ, assert(q) σ
Assert

σ′ = σ ∧ p
σ, require(p) σ′ Revert-1

σ ⇒ ¬p
σ, require(p) σ ∧ rev Revert-2

σ ; ¬p
σ, require(p) σ

Revert-3

σ′ = ∃x. σ[x/v] ∧ p ∧ ¬b
σ,modifies(v); loop inv(p); while b do s σ′ loop

reverts if(p) ∈ spec(m(e)) σ, require(¬p);m(e) σ′

σ,m(e) σ′ Revert-Inter

σ ⇒ p σ′ = ∃x. σ[x/v] ∧ q
σ,modifies(v); finv(p, q);m(e) σ′ Call-Spec

Fig. 4. Encoding rules (where finv(p, q) is ensures(p, q) or call inv(p, q))

Rules for revert include Revert-1 (the non-revert condition is part of the
pre-condition), Revert-2 (the revert condition met) and Revert-3 (the revert
condition is not met). The idea is that the function is reverted if any of the
condition leading to revert is satisfied. If the revert condition is satisfied, the
value of rev is set, and after that our system skips all the remaining statements
by using rule Rev-Prop.

Rules for external function calls include Call-spec, which replaces function
calls using either function specifications (if it calls for a local function) or call in-
variants (if it calls for an external function). This rule updates modified variables
v through the substitutions σ[x/v]. Note that, to propagate the reverts if(p) back
to the caller, via rule Revert-Inter, we simply convert it to require(¬p) before
the function call is encoded. Moreover, each ensures(p, q) is lifted to the context
of the current function by substituting free variables appearing on parameters
with their corresponding arguments.

Note that the correctness specification may be over-approximating and thus
our verification may lead to false alarms and spurious counterexamples. Instead
of running test cases with extra costs, the incorrectness specification associated
with external function calls is used to construct counterexamples. According to
the concrete values from counterexamples, we first determine an execution path
leading to the violation, and then use the achieves(p, q) statements associated
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with the involved external function calls to check whether the counterexample is
real. We develop another predicate postU (p, s) to compute under-approximating
post-states for the implementation s, then our system confirms the bug described
in the spec if q ⇒ σ. In term of encoding for postU , dropping execution paths is
allowed in incorrectness logic. Therefore, the number of loop iterations can be
freely chosen. Only the true-branch or the false-branch is selected while encoding
an if-statement. If there is an execution path that satisfies the incorrectness spec-
ification then the counterexample is determined to be a real violation. Finally, to
handle function call m(e); modifies(v); achieves(p’, q’) at the calling states σ, it
first tests p′ ⇒ σ. If this test succeeds, it produces σ[x/v]∧ q′ as the post-states.
Otherwise, if v ∩ FreeVars(σ) = ∅, it checks Sat(p′ ∧ σ). If it is satisfied, it
produces σ[x/v]∧ q′ as the post-states. The soundness of the former comes from
Consequence rule and the later is from Constancy rule in incorrectness logic.

5 Implementation and Evaluation

5.1 Implementation

iContract is implemented with around 1K lines of Python code. It supports
most features of Solidity version 0.5.1 including inheritance and important built-
in functions (e.g., send, and call). iContract uses a locally installed Solidity
compiler to compile a user-provided Solidity file into a JSON file containing
the typed abstract syntax tree (AST). Then, iContract analyzes the AST to
encode contracts into predicates using the Z3 library. We leverage NatSpec [4]
format to define our own specifications.

The encoding is mostly straightforward except some relevant details that we
discuss below. We use SMT Integer to model int/unsigned and int/address and
so on4. To support contract inheritance, we implement a symbol table which
allows us to query global variables and functions of parent contracts using inher-
itance tree provided by the Solidity compiler. We also take into account function
overriding and variable hiding.

Our current implementation has several limitations. First, it does not sup-
port low-level API calls including inline assembly, Application Binary Inter-
face functions, and bitwise operations. Second, iContract does not compute
gas consumption to determine out-of-gas exceptions. Last, iContract analyzes
contracts without the presence of aliasing. Note that although Solidity allows
two variables reference to the same data location (i.e., aliasing), it is not very
common in Solidity and we leave it to future work.

5.2 Experimental Evaluation

In the following, we design and conduct multiple experiments to answer the
following research questions (RQ).

4 Note that runtime checking for arithmetic overflow has been introduced since Solidity
0.8 and thus no longer an issue.
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Table 2. Statistics on verified contracts

Project #Contracts #Functions #Ifs #Specifications LOC #Transactions (mil)

BAT 4 16 20 17 179 3.97
BNB 2 13 22 25 150 1.00
HT 4 13 4 2 127 0.67

HOT 3 22 29 28 279 0.95
IOTX 8 32 28 35 500 0.28
QNT 5 24 13 16 239 1.21

MANA 11 28 21 70 282 2.50
ZIL 9 35 42 70 353 0.44

NXM 3 37 36 40 448 0.12
SHIB 4 33 12 33 448 9.5

– RQ1: Can iContract verify real-world smart contracts?

– RQ2: How does iContract compare with Solc-verify [14], a state-of-the-art
tool for verifying function-level properties?

RQ1 aims to evaluate whether iContract is useful for some practical smart
contracts. RQ2 aims to evaluate whether iContract’s approach (in particular,
its specification language) can achieve its goals better than existing approaches.

In the following, we present the evaluation results and answer the questions.
All our experiments are conducted on a single processor running an Ubuntu
16.04.6 LTS machine with Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz and
64GB of memory. The timeout is set to be 5 minutes for verifying the specifica-
tion. Our implementation and the verified contracts are available online [2].

RQ1: To answer this question, we identify a set of 10 high-profile projects from
EtherScan [3]. The relevant statistic of these contracts is shown in Table 2. The
table shows the name of each project. For each project, it shows the number of
contracts (#Contracts), the number of functions (#Functions), the number of
if-statements (#Ifs), the number of specification statements (#Specifications),
line of codes (LOC), and the number of transactions (#Transactions) in millions.
Most of them have over 200 lines of code and 20 functions. Each project is asso-
ciated with a Solidity file, which typically contains multiple contracts including
a main one as well as library or parent contracts. Since not all smart contracts
are written in the same Solidity versions, we have to convert them to a fixed
version (i.e., 0.5.1). This is necessary to ensure the consistency of our verifica-
tion results. All specifications are manually written by the authors and directly
injected into the Solidity files. The specifications are written in such a way that
they describe the logic of each function as precise as possible. There are 124
reverts if(), 2 contract invariants, 4 call invariants, 206 function specifications.

The verification results for each project is shown in Table 3 under column
iContract. The column #V shows the number of specifications that were suc-
cessfully verified. The column #F shows the number of falsified specifications.
The column Time shows the average verification time in seconds. Since we group
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1 /// reverts_if(_amount == 0);
2 function mint(address _to , uint256 _amount) private {
3 // Guard against overflow
4 require(balances[_to] + _amount > balances[_to]);
5 balances[_to] = balances[_to].add(_amount);
6 }

Fig. 5. An example illustrating the effectiveness of reverts if() in identifying incorrect
require statements

our specifications into a single specification to compare with Solc-verify, the col-
umn #Sp is less than the one shown in Table 2. Most of the projects are verified
within 5 seconds. Among 336 specification statements, 3 of them are falsified.
After manually investigating them, we confirm that iContract exposes con-
tract invariant violations in HOT, QNT and BNB. First, BNB stores the frozen
tokens in a mapping called freezeOf . When tokens are frozen, they are not sub-
tracted from totalSupply. As a result, sum(balances) 6= totalSupply . Second, the
totalSupply of QNT remains unchanged even when refresh QNT is created by
calling the function mint. Again, sum(balances) 6= totalSupply . Third, as shown
in Figure 5, HOT has the following require statement at line 4 which is meant
to prevent overflow according to the documentation. However, it also prevents
non-overflow cases such as when amount = 0 .

RQ2: To answer RQ2, we compare iContract against Solc-verify, a state-of-
the-art tool for verifying function-level properties of smart contracts [14]. Solc-
verify is selected as it shares much similarity with iContract, i.e., it supports
contract, function and loop invariants. Other verifiers either do not support
user-defined specification (such as Verismart [25]), or restrict their specification
in specific forms (e.g., linear temporal logic such as in Verx [24] and Smart-
Pulse [26]), which are not expressive enough to capture the specification re-
quired to verify the correctness of the contracts used in our experiments. We
first translate all specifications written in our language to the ones supported by
Solc-verify. The translation is not straightforward due to the fact that Solc-verify
does not support reverts if(p) and call invariants. We thus remove the call in-
variants, reverts if(p) and convert our ensures(p, q) statements into Solc-verify’s
specifications. The results are summarized in Table 3 under the column Solc-
verify. While Solc-verify does verify most of the contracts, results inconsistent
with ours are reported for 3 contracts, as shown in column #Consistent. All
of them are falsified by Solc but are verified by iContract. Our investigation
shows that the reason is the missing specifications for external function calls, i.e.,
the call invariants. In the ZIL project, the external function call token.transfer
(owner, amount) transfers tokens to the owner. Solc-verify assumes that all
global variables are modified after the call and thus sum(balances) = totalSupply
is falsified. In contrast, our call invariants indicate that the variable balances is
unchanged and the specification sum(balances) = totalSupply is preserved. In
the BAT and BNB projects, well-known external functions call such as send()
and transfer() are not properly handled in Solc-verify. We remark that besides
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Table 3. Comparison against Solc-verify

Project # Sp
iContract Solc-Verify

#V #F Time (s) #V #F Consistent Time (s)

BAT 13 13 0 4.93 12 1 × 4.51
BNB 15 14 1 7.20 13 2 × 4.00
HT 2 2 0 1.10 2 0 X 2.77

HOT 17 17 0 1.41 17 0 X 4.38
IOTX 23 23 0 2.09 23 0 X 4.26
QNT 11 10 1 1.33 10 1 X 4.69

MANA 42 42 0 3.94 42 0 X 6.63
ZIL 40 40 0 4.61 39 1 × 7.13

NXM 22 22 0 2.24 22 0 X 6.31
SHIB 23 23 0 1.76 23 0 X 5.95

supporting specification features such as reverts if(p) and call invariants, iCon-
tract works on Solidity code directly without converting it to another language
for verification. This makes verification of the falsified specification statements
straightforward in iContract, i.e., by transforming the respective undefined
functions into assertions.

6 Related Work and Conclusion

The verification for smart contracts has been the interests of multiple researchers.
The systems that are closely related to ours are Solc-verify [15] and MVP [9].
Solc-verify translates Solidity contracts into the Boogie intermediate language,
and relies on the Boogie system for verification. It supports contract invariant,
loop invariant, and pre-/post conditions. In particular, Solc-verify assertion lan-
guage targets the safety of low-level properties (e.g., the absence of overflows)
and high-level contract invariants (e.g., the sum of user balances equates to
the total supply). Similarly, Dill et al. recently proposed MVP, a static verifier
based on the Boogie verifier, for smart contracts in the Move language [9]. MVP
supports both contract invariants and functional invariants via pre/post con-
ditions. It also generates global invariants for runtime checking. MVP enables
an alias-free memory model through reference elimination which relies on bor-
row semantics. MVP was deployed for continuous verification on Move code and
Diem blockchain. iContract supports all the features supported by Solc-verify
and MVP, and additionally supports features like revert and call invariants that
are designed to handle dynamic dispatching on unknown function calls.

There are several other verification systems for smart contracts developed in
the last few years, e.g., VeriSmart [25], SmartACE [30], and VerX [24]. VeriS-
mart [25] focuses on intra-procedural analysis for verifying arithmetic (over-
and under-flows) safety. The main contribution of their work is an algorithm
that could refine transaction invariants of arbitrary transactions. These invari-
ants boost the precision of such verification. However, VeriSmart lacks inter-
procedural reasoning. SmartACE [30] is a framework that can verify user-annotated
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assertions by running multiple independent analysers. It models smart contract
library and transforms the verification problem into off-the-self analysers like
constrained Horn clause solving (e.g., SeaHorn) for correctness verification. In
contrast, iContract presents a built-in static analyser for a rich specification.
Finally, VerX [24] focuses on temporal properties of Ethereum contracts. It re-
duces the temporal safety verification to reachability verification and applies
the state-of-the-art reachability checking technique. While temporal logic based
specification is useful for specifying global properties, we believe that our speci-
fication language is better for supporting the motto of “specification is law” and
has its advantage on compositional verification.

To conclude, in this work, we design a static verification system with a spec-
ification language which supports fully compositional verification. Using iCon-
tract, we have verified 10 high-profile smart contracts against manually devel-
oped detailed specifications, many of which are beyond the capacity of existing
verifiers. In the future, we intend to improve the performance of iContract fur-
ther with optimization techniques.
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