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Verification to Satisfiability

Generating verification conditions for heap-based programs.

1struct node {int val;node next};
2int main(node x, node y) {
3 // PRE: odd(x,m) * odd(y,n)
4 int i = get_size(x);
5 int j = get_size(y);
6 if (i+j % 2 == 1) ERROR();
7 return 1;
8 }
9int get_size(node x) // SPEC only

10 // PRE: odd(x,k)
11 // POST: odd(x,k) & res=k
12 ;

odd(x ,m): singly-linked list whose
length m is an odd number.

Verification Condition:
Is ERROR() called?
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Verification to Satisfiability

1struct node {int val;node next};
2int main(node x, node y) {
3 // PRE: odd(x,m) * odd(y,n)
4 int i = get_size(x);
5 int j = get_size(y);
6 if (i+j % 2 == 1) ERROR();
7 return 1;
8 }
9int get_size(node x) // SPEC only

10 // PRE: odd(x,k)
11 // POST: odd(x,k) & res=k
12 ;
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VC

VC: separation logic with inductive definitions and arithmetic.

∃x1. x 7→node( , x1) ∗ even(x1,n−1) ⇒ odd(x ,n)
emp ∧ x = null ∧ n = 0 ⇒ even(x ,n)
∃x1.x 7→node( , x1) ∗ odd(x1,n−1) ⇒ even(x ,n)

VC ≡ odd(x ,m) ∗ odd(y ,n) ∧ (∃k . m + n = 2k + 1)

We need a satisfiability solver
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Our Approach

Compositional Satisfiability Solver
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Compositional Satisfiability Solver

The analysis result of a composite program is defined in terms of the
analysis results of its partsa.

acompositional shape analysis. C. Calcagno et. al. POPL’09.

1 summaries of the calling procedures are
inferred;

2 summaries of the composite program is
computed from the summaries of its callees.

Dependency
Call Graph
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Compositional Satisfiability Solver

The satisfiability result of a composite formula is defined in terms of
the satisfiability results of its parts.

Dependency Predicate Graph

satisfiability result = bases
a base is a formula without any inductive predicate
base of a formula precisely characterises its satisfiability
satisfiability of bases is decidable
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Compositional Satisfiability Solver

Given a formula,
1 bases of the inductive predicates are inferred;

2 a base of the formula is computed from the
bases of its inductive predicates.

Dependency
Predicate Graph
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Compositional Satisfiability Solver

Decision algorithm
1 Infer its base via bases of inductive predicates;

2 Transform the base to SMT formulas;

3 Discharge the SMT formulas.
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Compositional Satisfiability Solver: Example

VC = odd(x ,m) ∗ odd(y ,n) ∧ (∃k . m + n = 2k + 1)

1 Infer base:
a base of predicate odd(x ,n) is inferred as:

{ x 7→node( ) ∧ (∃i . n = 2i + 1 ∧ i≥0) }

a base of VC is computed as:

VC′≡ x 7→node( )∗y 7→node( )∧
(∃k .m+n=2k+1)∧(∃i .m=2i+1∧i≥0)∧(∃i .n=2i+1∧i≥0)

2 Transform VC′ into an equi-sat SMT formula:

π≡ x 6=null∧y 6=null∧x 6=y∧
(∃k .m+n=2k+1)∧(∃i .m=2i+1∧i≥0)∧(∃i .n=2i+1∧i≥0)

3 Discharge π: as π is unsatisfiable, so is VC ′ and then VC.
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Base Inference via Regular Unfolding Trees

method of infinite descent: a standard approach to
Diophantine equations

To show that an equation P has a solution.
First, we need to hypothesize a simpler equation Q and we show that:

Q(a) and P(a) hold for some natural number constant a,

and whenever Q(n) and P(n) hold, there exists a positive integer
m such that m < n and both Q(m) and P(m) hold.

Then, P has the same set of solutions with Q.

Our analogy

P is an inductive predicate; Q is its base

We propose an algorithm to infer the base
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Base Inference via Regular Unfolding Trees

Given an inductive predicate P(x̄),
1 Construct a regular unfolding tree for ∆0 ≡ P(x̄)

2 Infer the base for the cycles in a bottom-up manner

∆0

∆1 comp

∆2 ∆3 ∆4 bud

σ

∆0

∆1 basecomp

∆2 ∆3

baseP(P(x̄))≡{∆2,basecomp}
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Base Inference via Regular Unfolding Trees

∆0

∆1 comp

∆2 ∆3 ∆4 bud

σ

Sound Condition
exist an unfolding of some predicate P between comp and bud .

Our algorithm finds a base of the comp such that:
1 base and ∆4 are both sat when P has been unfolded a constant a

times.
2 if base and bud are both sat when P has been unfolded n times,

then base and comp are both sat when P has been unfolded
m < n times.
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Evaluation: with/without Compositionality

4,368 queries: 473 UNSAT and 3,895SAT

Data Structure #query without with
#Z3 Time #Z3 Time

Singly llist 666 3,173 1.01 762 0.40
Sorted llist 217 796 0.55 336 0.36
Doubly llist 452 1,803 0.79 552 0.46
Heap trees 386 3,732 6.03 865 2.61

AVL 881 9,051 23.06 2,026 10.85
RBT 1,741 3,491,730 74,158 1,767 2.81

rose-tree 25 300 0.34 153 0.25
4,368 3,510,585 74,189.78 6461 17.74

with/without
0.024% in time

0.184% in the numbers of Z3 invocations
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More in the paper

Correctness

Decidable Fragment

More experiments on SL-COMP benchmarks
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Conclusion

Compositional Satisfiability Solving

Given an inductive predicate P(x̄),
1 Construct a regular unfolding tree for ∆0 ≡ P(x̄)

2 Flatten the tree into a disjunctive set of base formulas

∆0

∆1 comp

∆2 ∆3 ∆4 bud

σ

∆0

∆1 basecomp

∆2 ∆3

baseP(P(x̄))≡{∆2,basecomp}
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