Compositional Satisfiability Solving in Separation Logic

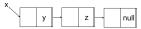
Quang Loc Le

University College London

VMCAI - January 19, 2021

Generating verification conditions for heap-based programs.

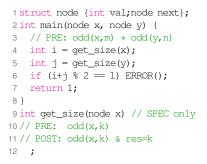
```
1 struct node {int val;node next};
2 int main(node x, node y) {
3 // PRE: odd(x,m) * odd(y,n)
4 int i = get_size(x);
5 int j = get_size(y);
6 if (i+j % 2 == 1) ERROR();
7 return 1;
8 }
9 int get_size(node x) // SPEC only
10 // PRE: odd(x,k)
11 // POST: odd(x,k) & res=k
12 ;
```

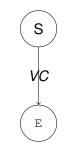


odd(x, m): singly-linked list whose length *m* is an odd number.

Verification Condition: Is ERROR() called?

Verification to Satisfiability





VC: separation logic with inductive definitions and arithmetic.

 $\exists x_1. x \mapsto node(-, x_1) * even(x_1, n-1) \Rightarrow odd(x, n)$ $emp \land x = null \land n = 0 \Rightarrow even(x, n)$ $\exists x_1.x \mapsto node(-, x_1) * odd(x_1, n-1) \Rightarrow even(x, n)$ $VC \equiv odd(x, m) * odd(y, n) \land (\exists k. m + n = 2k + 1)$

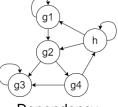
We need a satisfiability solver

Compositional Satisfiability Solver

The analysis result of a composite program is defined in terms of the analysis results of its parts^{*a*}.

^a compositional shape analysis. C. Calcagno et. al. POPL'09.

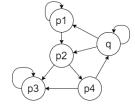
- summaries of the calling procedures are inferred;
- summaries of the composite program is computed from the summaries of its callees.



Dependency Call Graph

Compositional Satisfiability Solver

The satisfiability result of a composite formula is defined in terms of the satisfiability results of its parts.



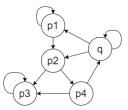
Dependency Predicate Graph

satisfiability result = bases

- a base is a formula without any inductive predicate
- base of a formula precisely characterises its satisfiability
- satisfiability of bases is decidable

Given a formula,

- bases of the inductive predicates are inferred;
- a base of the formula is computed from the bases of its inductive predicates.



Dependency Predicate Graph Decision algorithm

- Infer its base via bases of inductive predicates;
- Iransform the base to SMT formulas;
- Oischarge the SMT formulas.

Compositional Satisfiability Solver: Example

$$VC = \text{odd}(x,m) * \text{odd}(y,n) \land (\exists k. m + n = 2k + 1)$$

Infer base:

• a base of predicate odd(*x*, *n*) is inferred as:

 $\{ x \mapsto node(_) \land (\exists i. n = 2i + 1 \land i \ge 0) \}$

• a base of VC is computed as:

$$VC' \equiv x \mapsto node(_) * y \mapsto node(_) \land \\ (\exists k.m+n=2k+1) \land (\exists i.m=2i+1 \land i \ge 0) \land (\exists i.n=2i+1 \land i \ge 0)$$

2 Transform *VC'* into an equi-sat SMT formula:

$$\pi \equiv x \neq \text{null} \land y \neq \text{null} \land x \neq y \land \\ (\exists k.m+n=2k+1) \land (\exists i.m=2i+1 \land i \geq 0) \land (\exists i.n=2i+1 \land i \geq 0)$$

③ Discharge π : as π is unsatisfiable, so is *VC'* and then *VC*.

Base Inference via Regular Unfolding Trees

method of infinite descent: a standard approach to Diophantine equations

To show that an equation *P* has a solution.

First, we need to hypothesize a simpler equation *Q* and we show that:

- Q(a) and P(a) hold for some natural number constant a,
- and whenever Q(n) and P(n) hold, there exists a positive integer m such that m < n and both Q(m) and P(m) hold.

Then, *P* has the same set of solutions with *Q*.

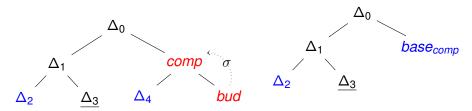
Our analogy P is an inductive predicate; Q is its base

We propose an algorithm to infer the base

Base Inference via Regular Unfolding Trees

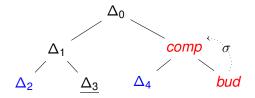
Given an inductive predicate $P(\bar{x})$,

- Construct a regular unfolding tree for $\Delta_0 \equiv P(\bar{x})$
- Infer the base for the cycles in a bottom-up manner



 $base^{\mathcal{P}}(\boldsymbol{P}(\bar{x})) \equiv \{\Delta_2, base_{comp}\}$

Base Inference via Regular Unfolding Trees



Sound Condition

exist an unfolding of some predicate *P* between *comp* and *bud*.

Our algorithm finds a *base* of the *comp* such that:

- base and Δ_4 are both sat when *P* has been unfolded a constant *a* times.
- if base and bud are both sat when P has been unfolded n times, then base and comp are both sat when P has been unfolded m < n times.</p>

Evaluation: with/without Compositionality

$4,368 \; queries: 473 \; \mbox{unsat}$ and $3,895 \; \mbox{sat}$

Data Structure	#query	without		with	
		#Z3	Time	#Z3	Time
Singly Ilist	666	3,173	1.01	762	0.40
Sorted Ilist	217	796	0.55	336	0.36
Doubly Ilist	452	1,803	0.79	552	0.46
Heap trees	386	3,732	6.03	865	2.61
AVL	881	9,051	23.06	2,026	10.85
RBT	1,741	3,491,730	74,158	1,767	2.81
rose-tree	25	300	0.34	153	0.25
	4,368	3,510,585	74,189.78	6461	17.74

with/without

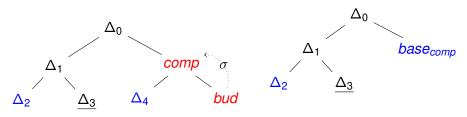
- 0.024% in time
- 0.184% in the numbers of Z3 invocations

- Correctness
- Decidable Fragment
- More experiments on SL-COMP benchmarks

Compositional Satisfiability Solving

Given an inductive predicate $P(\bar{x})$,

- Construct a regular unfolding tree for $\Delta_0 \equiv P(\bar{x})$
- Platten the tree into a disjunctive set of base formulas



 $base^{\mathcal{P}}(\boldsymbol{P}(\bar{x})) \equiv \{\Delta_2, base_{comp}\}$